4.8 Article

Stabilizing Cobalt-free Li-rich Layered Oxide Cathodes through Oxygen Lattice Regulation by Two-phase Ru Doping

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 62, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202213806

Keywords

Lattice Oxygen; Li-Rich Cathodes; Lithium-Ion Batteries; Structural Evolution; Voltage Decay

Ask authors/readers for more resources

This study investigates the mechanical behavior of cobalt-free Li1.2Ni0.2Mn0.6O2 and demonstrates the positive impact of two-phase Ru doping. The Ru doping improves structural reversibility and restrains structural degradation during cycling, resulting in high structural stability and a high capacity-retention rate during long-term cycling.
The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2Ni0.2Mn0.6O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2Ni0.2Mn0.6O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2-) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2Ni0.2Mn0.6O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available