4.8 Article

Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 62, Issue 5, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202212695

Keywords

Additive; Aqueous Electrolyte; Dendrite Growth; Zinc Anode; pH Buffer

Ask authors/readers for more resources

In this study, a multifunctional additive NHP was introduced to regulate zinc deposition and suppress side reactions in aqueous electrolyte. The results showed that the NHP additive enabled highly reversible Zn plating/stripping behaviors, and improved the electrochemical performances of zinc-ion batteries and zinc-based capacitors.
Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4+ tends to be preferably absorbed on the Zn surface to form a shielding effect and blocks the direct contact of water with Zn. Moreover, NH4+ and (H2PO4)(-) jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available