4.8 Article

Aluminum Plasmonic Nanoclusters for Paper-Based Surface- Enhanced Raman Spectroscopy

Journal

ANALYTICAL CHEMISTRY
Volume 94, Issue 47, Pages 16319-16327

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.2c03014

Keywords

-

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 109-2113-M-007-015, 110-2113-M-007-022]
  2. Frontier Research Center on Fundamental and Applied Sciences of Matters from the Featured Areas Research Center Program by the Ministry of Education [111QR001I5]

Ask authors/readers for more resources

This paper introduces an inexpensive aluminum nanoparticle-decorated paper as a facile SERS-based detection platform, which provides high sensitivity and excellent reproducibility for detecting various analytes. The platform is applicable for on-site detection in food inspection and environmental monitoring.
Although surface-enhanced Raman spectroscopy (SERS) can rapidly identify molecular fingerprints and has great potential for analysis, the need for delicate plasmonic substrates and complex laboratory instruments seriously limits its applicability for on-site detection. This paper describes the development of an inexpensive aluminum nanoparticle (AlNP)-decorated paper that functions as a facile SERS-based detection platform (Al-PSERS). Polydopamine-protected AlNPs were chemically synthesized and then simply drop-cast onto a hydrophobic cellulose paper, forming a monolayer AlNP cluster array. Because of the abundance of hot spots arising from the plasmonic clusters, the inherent quasi -threedimensional structure of the cellulose fibers, and the concentration effect of the hydrophobic surface, the Al-PSERS provided significant enhancements to the signal of various analytes, measured using a portable 785 nm Raman spectrometer. Near-field optical simulations and experimental spectroscopic results revealed that the local electric fields and corresponding SERS signal intensities of the AlNP array exhibited clear particle-length and cluster-size dependencies. Therefore, the Al-PSERS could be optimized to provide high sensitivity (enhancement factor: 2 x 103) and excellent reproducibility (variation: 8.72%). Moreover, the optimal Al-PSERS was capable of detecting colorants and environmental pollutants; for example, the detection limits of allura red and benzo[a]pyrene reached as low as 3.5 and 0.15 ppm, respectively. Furthermore, the Al-PSERS could rapidly identify illegal (rhodamine B) and edible (allura red, erythrosine) colorants from a mixture of multiple colorants or from adulterated candies. Because it facilitates rapid detection, is of low cost, and has minimal technical requirements, Al-PSERS should be applicable to on site detection in, for example, food inspection and environmental monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available