4.7 Article

A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis

Journal

ANALYTICA CHIMICA ACTA
Volume 1239, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2022.340742

Keywords

Micromixer; Acoustic streaming; Inertia

Ask authors/readers for more resources

In this study, we proposed an acoustic-inertial micromixer based on multi-vortex synergy by introducing inertia into acoustic micromixer. The device contains side-wall sharp-edge structure and contraction-expansion array structure to enhance the acoustic streaming with inertial vortices. Rapider mixing and wider operating ranges were achieved in this device at lower driving voltages compared with conventional acoustic micromixers.
Mixing is one of the most important steps in chemical reaction, sample preparation and emulsification. However, achieving complete mixing of fluids at high throughput is still a challenge for acoustic micromixers, which are limited by the intensity of the acoustic streaming. In this study, we proposed an acoustic-inertial micromixer based on multi-vortex synergy by introducing inertia into acoustic micromixer. The device contains side-wall sharp-edge structure and contraction-expansion array structure (SCEA) in the microchannel to enhance the acoustic streaming with inertial vortices. The mixing mechanism of SCEA was explored and the mixing process showed three modes: acoustic streaming dominant mode, acoustic-inertial synergy mode and inertial vortex dominant mode. On the basis of the vortex seed provided by the contraction-expansion structure, stronger chaotic advection was produced by the synergy of acoustic streaming and inertial vortices (including Dean vortex and horizontal vortex). Rapider mixing (0.20 m s) and wider operating ranges (0-3000 mu L/min) were achieved in SCEA at lower driving voltages compared with conventional acoustic micromixers. Finally, more homogeneous and tunable chitosan nanoparticles and shellac nanoparticles were synthesized based on this device. The micromorphology, particle size distribution and drug loading properties of the products were measured and compared. This work provides a platform for control of mixing process in specific application environments with high operational flexibility, indicating potentially wider application of SCEA in multi-functional integration of lab-on-a-chip systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available