4.7 Article

Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation

Journal

JOURNAL OF NEUROINFLAMMATION
Volume 13, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s12974-016-0754-9

Keywords

Morphine tolerance; Glia activation; AMPK; Cytokines; MAPK

Funding

  1. National Natural Science Foundation of China [81471142, 81571069]
  2. China Postdoctoral Science Foundation Commission [2015M580473]
  3. Science and Technology Project of Jiangsu Provincial Administration of traditional Chinese Medicine [YB2015178]
  4. Foundation of Nanjing Medical University [2014NJMUZD015]

Ask authors/readers for more resources

Background: Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. Methods: The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. Results: We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1 beta (IL-1 beta), but increased IL-6 and tumor necrosis factor-alpha (TNF-alpha) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Conclusions: Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphineinduced microglial activation through increasing AMPK phosphorylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available