4.8 Article

Ternary All-Polymer Solar Cells with Efficiency up to 18.14% Employing a Two-Step Sequential Deposition

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

A new perspective to develop regiorandom polymer acceptors with high active layer ductility, excellent device stability, and high efficiency approaching 17%

Qunping Fan et al.

Summary: In this study, a series of chlorinated PSMAs with high molecular weight, favorable intermolecular interaction, and improved physicochemical properties were developed by adjusting chlorinated positions and copolymerized sites on end groups. The optimized blend morphology and high molecular weight of the chlorinated PSMA resulted in increased ductility and improved power conversion efficiency in all-polymer solar cells.

CARBON ENERGY (2023)

Article Chemistry, Multidisciplinary

Importance of High-Electron Mobility in Polymer Acceptors for Efficient All-Polymer Solar Cells: Combined Engineering of Backbone Building Unit and Regioregularity

Soodeok Seo et al.

Summary: By designing a new series of polymerized small molecule acceptor-based polymer acceptors, the authors controlled the donating moiety and backbone regioregularity to enhance electron mobility and power conversion efficiencies. The effects of different donating units and regioisomers on PCEs were found to be opposite, with the highest efficiency achieved by a specific blend with the highest electron mobility. The study highlights the importance of simultaneous engineering of the backbone building unit and regioregularity for high-mobility P-A and highly efficient all-PSCs.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Chemistry, Multidisciplinary

Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7%

Yun Li et al.

Summary: This study successfully achieved efficient all-polymer solar cells by designing and synthesizing a series of polymer acceptors. Through the investigation of the structure-property relationship of polymer acceptors, new insights into polymer acceptors were provided, and a feasible approach to develop efficient conjugated polymer acceptors was paved.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination

Kaien Chong et al.

Summary: This work demonstrates highly efficient polymer solar cells by improving charge extraction and suppressing charge recombination through side-chain engineering, adopting ternary blends, and introducing volatilizable solid additives. The optimized molecular structure and blend morphology lead to improved fill factor and power conversion efficiency.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Polymer Acceptors with Flexible Spacers Afford Efficient and Mechanically Robust All-Polymer Solar Cells

Zewdneh Genene et al.

Summary: The introduction of a flexible conjugation-break spacer (FCBS) into polymer acceptors (P(A)s) enables the achievement of highly efficient and mechanically robust all-polymer solar cells (all-PSCs), improving both photovoltaic performance and mechanical stretchability.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone

Huiting Fu et al.

Summary: A novel polymer acceptor, PYT-1S1Se, designed with an asymmetrical selenophene-fused framework, has been shown to optimize optical absorption and electronic properties in all-polymer solar cells. Compared with other analogs, all-PSCs derived from PYT-1S1Se demonstrate improved J(sc) and V-oc metrics, resulting in a record-high power conversion efficiency of 16.3%.

SCIENCE CHINA-CHEMISTRY (2022)

Review Chemistry, Multidisciplinary

Recent progress in organic solar cells (Part I material science)

Yahui Liu et al.

Summary: In recent years, organic solar cells (OSCs) have made significant progress with power conversion efficiencies (PCEs) over 18%, showing promising practical applications. Key research focuses in the OSC field include development in material science and interface materials. The article systematically summarizes the recent progress in these areas and discusses current challenges and future developments.

SCIENCE CHINA-CHEMISTRY (2022)

Article Chemistry, Physical

Synergistic Engineering of Side Chains and Backbone Regioregularity of Polymer Acceptors for High-Performance All-Polymer Solar Cells with 15.1% Efficiency

Cheng Sun et al.

Summary: Tuning the aggregation and crystalline properties of polymers is crucial for achieving optimal blend morphology and high power conversion efficiency in all-polymer solar cells (all-PSCs). Simultaneous engineering of PSMA backbone regioregularity and side-chain structures is important for enhancing electron mobility, optimizing blend morphology, and achieving highly efficient all-PSCs.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Near-infrared absorbing polymer acceptors enabled by selenophene-fused core and halogenated end-group for binary all-polymer solar cells with efficiency over 16%

Qunping Fan et al.

Summary: Recent advances in all-polymer solar cells have been hindered by the lack of polymerized small-molecule acceptors with desirable optoelectronic properties, particularly in capturing near-infrared photons. By developing novel near-infrared absorbing PSMAs with halogenated end-groups, researchers have managed to significantly enhance the performance of all-PSCs, achieving impressive power conversion efficiencies and high short-circuit current densities. The introduction of chlorination in the end-group of the acceptors has shown great potential in practical applications of efficient all-PSCs, emphasizing the importance of optimizing optoelectronic properties for enhanced device performance.

NANO ENERGY (2022)

Article Chemistry, Multidisciplinary

A Vinylene-Linker-Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables High-Performance All-Polymer Solar Cells with Over 17% Efficiency

Han Yu et al.

Summary: This study reports a high-performance polymer acceptor based on vinylene linkers, which exhibit a more coplanar and rigid molecular conformation compared to traditional thiophene-based acceptors. This leads to higher mobility and reduced energetic disorder. Furthermore, the blend based on this polymer acceptor demonstrates high domain purity, resulting in a better fill factor in all-polymer solar cells.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

16.52% Efficiency All-Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness

Wenqing Zhang et al.

Summary: In this study, a third polymer donor, PTQ10, was introduced to finely tune the energy-level matching and microscopic morphology of the polymer blend photoactive layer in all-polymer solar cells (all-PSCs). The addition of PTQ10 improved the charge separation and transport efficiency, resulting in a high power conversion efficiency (PCE) of 16.52%. Furthermore, the all-PSCs exhibited a high tolerance of the photoactive layer thickness, achieving high PCEs of 15.27% and 13.91% at thick photoactive layer thicknesses, which are the highest reported for all-PSCs.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Single-Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor

Rui Sun et al.

Summary: The ternary strategy is an effective approach to achieve high-efficiency OSCs, but the nonradiative voltage loss limits further efficiency improvements. By incorporating an asymmetric guest acceptor BTP-2F2Cl, the OSCs show improved photoluminescence quantum yield, exciton diffusion length, and absorption spectrum, leading to enhanced power conversion efficiency.

ADVANCED MATERIALS (2022)

Review Chemistry, Multidisciplinary

Polymer Acceptors for High-Performance All-Polymer Solar Cells

Suxiang Ma et al.

Summary: All-polymer solar cells have shown excellent mechanical flexibility and device stability compared to other organic solar cells. This review summarizes the recent progress of polymer acceptors based on electron-deficient building blocks, and discusses the structure-property correlations and the development of new building blocks for efficient all-polymer solar cells.

CHEMISTRY-A EUROPEAN JOURNAL (2022)

Article Polymer Science

A Near-Infrared Polymer Acceptor Enables over 15% Efficiency for All-Polymer Solar Cells

Tao Wang et al.

Summary: In this study, a fused-aromatic-ring-constructed near-infrared polymer acceptor PYT-Tz was designed and synthesized, and high-performance all-polymer solar cells were achieved by blending PYT-Tz with PBDB-T. Compared with traditional materials, PYT-Tz exhibited stronger absorption, higher electron mobility, and ordered molecular packing, leading to efficient hole injection and reduced non-radiative recombination loss. This research is of great importance for the development of high-performance all-polymer solar cells.

CHINESE JOURNAL OF POLYMER SCIENCE (2022)

Article Polymer Science

Effect of Isomerization of Linking Units on the Photovoltaic Performance of PSMA-Type Polymer Acceptors in All-Polymer Solar Cells

Liuyang Zhou et al.

Summary: Isomerization of functional groups in photovoltaic materials is an effective strategy to tune the molecular packing and photovoltaic performance of all-polymer solar cells. The study synthesized two narrow-band gap polymer acceptors through copolymerization of a small-molecule acceptor and thiophene-thiazolothiazole with isomerized ethylhexyl substitution. The results showed that the isomerization of polymer acceptors resulted in a red-shifted absorption spectra and higher lying LUMO energy level, affecting the photovoltaic performance of the all-polymer solar cells.

MACROMOLECULES (2022)

Article Chemistry, Physical

Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology

Lei Zhu et al.

Summary: Morphological control of donor and acceptor domains is crucial for efficient organic photovoltaics, and this study demonstrates a double-fibril network strategy to achieve a high power conversion efficiency of 19.3%.

NATURE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6% efficiency

Ke Hu et al.

Summary: A new small-molecule acceptor-based polymerized solar cell (PYCl-T) with high efficiency and thermal stability was designed and synthesized using a ternary blending system.

SCIENCE CHINA-CHEMISTRY (2022)

Article Chemistry, Physical

Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology

Yue Zhang et al.

Summary: By using 1-chloronaphthalene as the solvent additive during the deposition of the polymer acceptor in the top layer and applying thermal annealing on the entire active layer, the favorable morphology led to greatly enhanced exciton splitting efficiency, reduced trap density, improved charge transport, and suppressed charge recombination loss, resulting in a high power conversion efficiency and the highest fill factor for all-PSCs based on polymerized small molecule acceptors up to date. This work demonstrates an effective strategy for morphology optimization of layer-by-layer processed all-polymer solar cells.

NANO ENERGY (2022)

Article Chemistry, Physical

Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics

Lingling Zhan et al.

Summary: By constructing ternary organic photovoltaics, the open-circuit voltage (V-oc) loss is reduced, leading to a higher voltage without sacrificing the absorbing range. In addition, the ternary blend exhibits enhanced charge transport property and a higher fill factor.

JOULE (2022)

Review Energy & Fuels

Selenium: A Unique Member in the Chalcogen Family for Conjugated Materials Used in Perovskite and Organic Solar Cells

Feng Qi et al.

Summary: Organic conjugated materials play a crucial role in the development of PVSCs and OSCs, and the introduction of selenium is an efficient way to enhance material properties and improve solar cell performance.

SOLAR RRL (2022)

Article Chemistry, Multidisciplinary

Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor

Wei Gao et al.

Summary: By adopting the asymmetric selenium substitution strategy and using a pseudosymmetric electron acceptor, the power conversion efficiency of planar-mixed heterojunction organic solar cells (PMHJ OSCs) can be significantly improved. The increased dielectric constant and improved dimer packing lead to lower exciton binding energy, more efficient exciton dissociation, and reduced radiative recombination loss. These findings provide an effective way to develop highly efficient acceptor materials for OSCs.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics

Chengliang He et al.

Summary: This study investigates the advantages of using the sequential casting (SC) method for bulk heterojunction (BHJ)-based organic solar cells (OSCs). It is found that SC processing can achieve better morphology and device performance compared to the widely-used blend casting (BC) method. The observations on phase separation and vertical distribution inspire the proposal of the swelling-intercalation phase-separation model to explain the morphology evolution during SC processing. Moreover, the vertical phase segregation is found to improve device performance through affecting charge transport and collection processes.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

A New Polymer Donor Enables Binary All-Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness

Jingwen Wang et al.

Summary: The development of polymerized small-molecule acceptors has improved the power conversion efficiencies (PCEs) of all-polymer organic photovoltaic (OPV) cells. However, suitable polymer donors for all-polymer OPV cells are still lacking. In this study, a new polymer donor named PQM-Cl is designed and its photovoltaic performance is explored.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution

Yanan Wei et al.

Summary: The variation of the vertical component distribution has a significant impact on the photovoltaic performance of organic solar cells. This study demonstrates that sequential deposition of materials can improve the efficiency of solar cells.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

A Top-Down Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable All-Polymer Solar Cells

Huiting Fu et al.

Summary: By leveraging the layer-by-layer (LBL) deposition technique to engineer the morphology of all-polymer blends, optimal molecular orientation, vertical composition distribution, and efficient charge transport and extraction have been achieved, leading to high-performance all-polymer solar cells (all-PSCs).

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Nonhalogenated Dual-Slot-Die Processing Enables High-Efficiency Organic Solar Cells

Jingwei Xue et al.

Summary: Organic solar cells (OSCs) have shown great potential, but traditional methods and toxic solvents limit their commercialization and efficiency. A dual-slot-die sequential processing (DSDS) strategy is proposed to overcome these limitations. The unique film-formation mechanism contributes to the improved performance.

ADVANCED MATERIALS (2022)

Review Chemistry, Multidisciplinary

Renewed Prospects for Organic Photovoltaics

Guichuan Zhang et al.

Summary: Organic photovoltaics (OPVs) have undergone three stages of development, including optimizing bulk heterojunctions, improving donor-acceptor match, and developing non-fullerene acceptors (NFAs). NFAs have resulted in higher power conversion efficiencies (PCEs) surpassing 15% due to reduced energy losses and increased quantum efficiencies. The review provides an update on recent progress in OPV technology, including novel NFAs and donors, understanding structure-property relationships, and commercialization challenges.

CHEMICAL REVIEWS (2022)

Review Chemistry, Multidisciplinary

Recent Advances in Nonfullerene Acceptor-Based Layer-by-Layer Organic Solar Cells Using a Solution Process

Min Hun Jee et al.

Summary: Sequential layer-by-layer organic solar cells have attracted attention due to their potential for high power conversion efficiencies and their ability to optimize structure and performance. The longer exciton diffusion length of nonfullerene acceptors provides a new direction for improving the performance of these solar cells. However, challenges remain in large-scale production and device stability.

ADVANCED SCIENCE (2022)

Article Chemistry, Multidisciplinary

Random copolymerization strategy for non-halogenated solvent-processed all-polymer solar cells with a high efficiency of over 17%

Jiabin Zhang et al.

Summary: By adopting a random copolymerization strategy, the donor polymer JD40-BDD20 for non-halogenated solvent-processed all-PSCs shows improved solubility, suitable pre-aggregation and crystallinity, and superior miscibility with the acceptor PJTVT. The incorporation of the BDD unit enables a favorable morphology, leading to enhanced device performance with a PCE reaching 17.21% when using PA-5 as the acceptor.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Sequentially regular polymer acceptors featuring flexible spacers for high-performance and mechanically robust all-polymer solar cells

Jin-Woo Lee et al.

Summary: This study achieves highly efficient and mechanically robust polymer solar cells by designing a polymerized small-molecule acceptor with regular flexible spacers. The resulting solar cells show high power conversion efficiency and stretchability, and are fabricated using an environmentally friendly solvent process.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

Solid additive tuning of polymer blend morphology enables non-halogenated-solvent all-polymer solar cells with an efficiency of over 17%

Ke Hu et al.

Summary: This study utilizes non-halogenated solvent toluene and volatilizable DTT solid additive to process all-polymer solar cells, achieving eco-friendly and high efficiency. The DTT solid additive fine-tunes the aggregation of polymer donors and acceptors, resulting in active layers with appropriate domain size and high purity, leading to improved performance of the all-polymer solar cells.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Chemistry, Multidisciplinary

An efficient polymer acceptor via a random polymerization strategy enables all-polymer solar cells with efficiency exceeding 17%

Yun Li et al.

Summary: This study developed a series of polymer acceptors using a random copolymerization strategy, which demonstrated better optical and electronic properties compared to traditional polymer acceptors. The highest efficiency all-polymer solar cell to date was successfully fabricated.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Review Materials Science, Multidisciplinary

Morphology control in high-efficiency all-polymer solar cells

Kangkang Zhou et al.

Summary: This review discusses high-performance strategies for all-polymer solar cells (All-PSCs), focusing on morphology control. By driving the molecular design of novel polymer acceptors and optimizing morphology, the power conversion efficiency (PCE) of All-PSCs has rapidly developed and exceeded 17%. The crucial role of molecular miscibility in influencing morphological features and performance metrics is emphasized.

INFOMAT (2022)

Review Chemistry, Multidisciplinary

Polymerized Small-Molecule Acceptors for High-Performance All-Polymer Solar Cells

Zhi-Guo Zhang et al.

Summary: All-polymer solar cells have attracted significant research interest due to their good film formation, stable morphology, and mechanical flexibility. The strategy of polymerizing small-molecule acceptors to construct new-generation polymer acceptors has significantly increased the power conversion efficiency, but current challenges and future prospects still need to be addressed.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Efficient, Thermally Stable, and Mechanically Robust All-Polymer Solar Cells Consisting of the Same Benzodithiophene Unit-Based Polymer Acceptor and Donor with High Molecular Compatibility

Jin-Woo Lee et al.

Summary: Researchers have developed a series of polymer acceptors based on non-fullerene small molecule acceptors, which show enhanced compatibility and performance when blended with high-performance polymer donors.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells with a Pseudo-Bilayer Configuration Enabled by a Stepwise Optimization Strategy

Qiang Wu et al.

Summary: In this study, a high-efficiency PBDB-T/PYT all-organic solar cell was successfully fabricated using a special LbL deposition technique, achieving an efficiency of 15.17% through synergistic control of additive dosages. It was found that this synergistic control of additive dosages was also confirmed in other photovoltaic systems.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%

Lingling Zhan et al.

Summary: This study proposes and demonstrates a method to optimize the morphology of the active layer in organic photovoltaic devices by combining the layer-by-layer (LbL) procedure and the ternary strategy. By adding an asymmetric electron acceptor to the binary donor:acceptor host, a vertical phase distribution is formed, leading to improved efficiency in OPV devices.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Regio-Regular Polymer Acceptors Enabled by Determined Fluorination on End Groups for All-Polymer Solar Cells with 15.2 % Efficiency

Han Yu et al.

Summary: The two regio-regular polymer acceptors synthesized in this study show significant performance difference, with PYF-T-o exhibiting better photon absorption and more ordered inter-chain packing, resulting in higher power conversion efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor

Huiting Fu et al.

Summary: A new class of narrow-bandgap polymer acceptors, the PZT series, was developed to address challenges in all-polymer solar cells, resulting in improved performance due to red-shifted optical absorption and up-shifted energy levels. The regioregular PZT-gamma was specifically designed to avoid isomer formation during polymerization, leading to enhanced efficiency, short-circuit current density, and energy loss in all-PSCs.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Achieving Efficient Ternary Organic Solar Cells Using Structurally Similar Non-Fullerene Acceptors with Varying Flanking Side Chains

Yuan Chang et al.

Summary: This study systematically investigated the steric and electronic effects of three structurally similar non-fullerene acceptors on the blend morphology and device performance. By incorporating non-fullerene acceptors with better molecular packing into the PTQ10 donor polymer, a novel ternary strategy was explored, resulting in enhanced photon response, improved charge transport, and suppressed charge recombination, ultimately achieving an outstanding power conversion efficiency of 17.6% with a fill factor of 78.8% in the ternary device.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Baseplate Temperature-Dependent Vertical Composition Gradient in Pseudo-Bilayer Films for Printing Non-Fullerene Organic Solar Cells

Yina Zheng et al.

Summary: This study investigates the temperature-dependent blend morphology by exploring the impact of baseplate temperature on sequential blade-processing deposition. The results show that as the temperature increases, the morphology of the active layer evolves, leading to an impact on device performance.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Multi-Selenophene-Containing Narrow Bandgap Polymer Acceptors for All-Polymer Solar Cells with over 15 % Efficiency and High Reproducibility

Qunping Fan et al.

Summary: The newly developed multi-selenophene-containing PSMA material PFY-3Se shows outstanding performance in all-polymer solar cells, with high efficiency, low energy loss, and good batch-to-batch reproducibility, indicating great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

High-Performance Noncovalently Fused-Ring Electron Acceptors for Organic Solar Cells Enabled by Noncovalent Intramolecular Interactions and End-Group Engineering

Xin Zhang et al.

Summary: NFREAs have simple synthetic routes, high efficiencies, and low costs, but their efficiencies are still far behind those of FREAs. This study designed new NFREAs with precisely tuned electronic properties, charge transport, and energy loss to achieve high-performance solar cell efficiencies.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Side-Chain Engineering on Y-Series Acceptors with Chlorinated End Groups Enables High-Performance Organic Solar Cells

Yuzhong Chen et al.

Summary: Chemical modifications of non-fullerene acceptors have been shown to improve the efficiency of organic solar cells. By introducing chlorination and inner side-chain engineering, a higher power conversion efficiency was achieved. Furthermore, the impact of asymmetric alkoxy substitution on the outer side chains was studied, highlighting the importance of achieving a balance between open-circuit voltage and short-circuit current density.

ADVANCED ENERGY MATERIALS (2021)

Article Energy & Fuels

Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells

Chao Li et al.

Summary: The molecular design of acceptor and donor molecules has significantly advanced organic photovoltaics. By introducing branched alkyl chains in non-fullerene acceptors, favorable morphology in the active layer can be achieved, leading to a certified device efficiency of 17.9%. This modification can completely alter the molecular packing behavior of non-fullerene acceptors, resulting in improved structural order and charge transport in thin films.

NATURE ENERGY (2021)

Article Chemistry, Physical

Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors

Rui Sun et al.

Summary: The study focuses on developing high-performance all-polymer solar cells by designing a novel polymer acceptor PY2F-T and enhancing efficiency through ternary blend with PYT in the PM6: PY2F-T host system. This approach significantly improves power conversion efficiency and stability, marking a promising future for the application of all-PSCs.

JOULE (2021)

Article Chemistry, Multidisciplinary

PEDOT:PSS-Free Polymer Non-Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binary-Solvent-Chlorinated ITO Anode

Rui Sun et al.

Summary: This study introduces a strategy using a binary solvent-chlorinated indium tin oxide (ITO) anode to enhance the performance of non-fullerene polymer solar cells (PSCs). Experimental results show that devices based on ITO-Cl-ODCB:H2O2 exhibit significantly better performance compared to those based on ITO/PEDOT:PSS, indicating its great potential for application in PEDOT:PSS-free PSCs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Regioregular Narrow-Bandgap n-Type Polymers with High Electron Mobility Enabling Highly Efficient All-Polymer Solar Cells

Huiliang Sun et al.

Summary: The study successfully improved the efficiency of all-polymer solar cells by synthesizing narrow-bandgap polymer acceptors with regular structures. By introducing a ternary system with different components, further optimization of blend morphology and charge transport was achieved, leading to an enhanced power conversion efficiency.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency

Can Yang et al.

Summary: By using a dissymmetric backbone and selenophene substitution on the central core, symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors with varying numbers of selenophene were synthesized, leading to improved device performance and efficiency.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells

Sebastian A. Schneider et al.

Summary: Translating all-polymer solar cells to scalable roll-to-roll-compatible fabrication techniques is crucial for the application of organic photovoltaics at a large scale. The use of phthalates as additives in controlling polymer crystallization and phase separation has been shown to significantly improve performance. Real-time X-ray diffraction measurements during blade-coating provide mechanistic insights into the role of dioctyl phthalate as a compatibilizer in reducing polymer demixing, leading to enhanced device performance.

CHEMISTRY OF MATERIALS (2021)

Article Chemistry, Multidisciplinary

Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency

Gaoda Chai et al.

Summary: Side-chain engineering plays a crucial role in optimizing Y-series nonfullerene acceptors (NFAs) for organic solar cells (OSCs). By investigating the orientation of side chains, it was found that the meta-positioned hexylphenyl group (m-BTP-PhC6) showed the most beneficial effects on optical absorption, intermolecular packing, and phase separation of NFAs, resulting in a device efficiency of 17.7% when paired with a donor polymer PTQ10. This study demonstrates that regulating side-chain orientations of Y-series NFAs is a promising strategy for achieving favorable morphology, high charge mobility, and improved solar cell performances.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5% Efficiency

Can Yang et al.

Summary: The synthesis of symmetric or dissymmetric A-DA'D-A type non-fullerene small molecular acceptors (NF-SMAs) using a dissymmetric backbone and selenophene substitution on the central core leads to improved optical and electrical properties. Increasing the number of selenophene results in a red-shifted absorption, as well as larger electron mobility and crystallinity in the thin film. The combination of dissymmetric core and precise replacement of selenophene effectively enhances charge transport characteristics in binary polymer solar cells.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency

Yong Cui et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

High-Performance All-Polymer Solar Cells: Synthesis of Polymer Acceptor by a Random Ternary Copolymerization Strategy

Jiaqi Du et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Multidisciplinary

Polymer Acceptors Containing B←N Units for Organic Photovoltaics

Ruyan Zhao et al.

ACCOUNTS OF CHEMICAL RESEARCH (2020)

Article Chemistry, Multidisciplinary

A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells

Francis Lin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells

Zhenzhen Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Materials Science, Multidisciplinary

Two similar near-infrared (IR) non-fullerene acceptors as near IR sensitizers for ternary solar cells

Mumin Shi et al.

ORGANIC ELECTRONICS (2020)

Article Chemistry, Multidisciplinary

Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model

Lingling Zhan et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Physical

Elevated Stability and Efficiency of Solar Cells via Ordered Alloy Co-Acceptors

Qiaoqiao Zhao et al.

ACS ENERGY LETTERS (2019)

Review Chemistry, Multidisciplinary

Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells

Changyeon Lee et al.

CHEMICAL REVIEWS (2019)

Article Chemistry, Multidisciplinary

A chlorinated non-fullerene acceptor for efficient polymer solar cells

Mei Luo et al.

CHINESE CHEMICAL LETTERS (2019)

Article Chemistry, Multidisciplinary

Aromatic-Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications

Jing Yang et al.

ADVANCED MATERIALS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)