4.8 Article

Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells

Journal

ADVANCED MATERIALS
Volume 35, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202208997

Keywords

morphology control; multicomponent bulk heterojunctions; nonfullerene organic solar cells; sequential deposition; vertical phase separation

Ask authors/readers for more resources

Sequential deposition is used to fabricate multicomponent organic solar cells with a double-bulk heterojunction structure, improving light absorption and morphology without complex optimization. The power conversion efficiency is improved from 18.25% to 19.61% compared to binary blend OSCs, while a quaternary blend of OSCs shows a reduced efficiency of 15.83%. This demonstrates the potential of the double-BHJ strategy in enhancing the performance of OSCs.
Constructing tandem and multi-blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single-junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology-optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double-bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance. Two efficient donor-acceptor pairs, D18-Cl:BTP-eC9 and PM6:L8-BO, are sequentially deposited to form the D18-Cl:BTP-eC9/PM6:L8-BO double-BHJ active layer. In these double-BHJ OSCs, light absorption is significantly improved, and optimal morphology is also retained without requiring a more complicated morphology optimization involved in quaternary blends. Compared to the quaternary blend devices, energy loss (E-loss) is also reduced by rationally matching each donor with an appropriate acceptor. Consequently, the power conversion efficiency (PCE) is improved from 18.25% for D18-Cl:BTP-eC9 and 18.69% for PM6:L8-BO based binary blend OSCs to 19.61% for the double-BHJ OSCs. In contrast, a D18-Cl:PM6:L8-BO:BTP-eC9 quaternary blend of OSCs exhibited a dramatically reduced PCE of 15.83%. These results demonstrate that a double-BHJ strategy, with a relatively simple processing procedure, can potentially enhance the device performance of OSCs and lead to more widespread use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available