4.8 Article

High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites

Journal

ADVANCED MATERIALS
Volume 35, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202207436

Keywords

colossal magnetoresistance; high entropy oxides; magneto-electronic phase separation; metal-insulator transitions; strongly correlated electron systems

Ask authors/readers for more resources

Technologically relevant strongly correlated phenomena exhibited by perovskite manganites are enhanced by the coexistence of multiple competing magneto-electronic phases. The recently discovered high entropy oxides exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Combining the high entropy concept with standard property control, the study demonstrates the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.
Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25La0.25Nd0.25Sm0.25)(1-)xSrxMnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR approximate to 1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available