4.8 Review

Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constructing Techniques, Applicability, and Prospective

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 14, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202213510

Keywords

aqueous zinc-ion batteries (ZIBs); artificial interphases; constructing techniques; protection mechanisms; Zn anodes

Ask authors/readers for more resources

This review comprehensively summarizes the recent progress of interphase modulation in zinc-ion batteries (ZIBs), aiming to achieve high-performance ZIBs with prolonged lifespan and high reversibility. It provides a systematic guideline for constructing ideal artificial layers.
Aqueous zinc-ion batteries (ZIBs) with metallic Zn anodes have emerged as promising candidates for large-scale energy storage systems due to their inherent safety and competitive capacity. However, challenges of Zn anodes, including dendrite growth and side reactions, impede the commercialization of ZIBs. The regulation of the Zn/electrolyte interphase is a feasible method to achieve high-performance ZIBs with prolonged lifespan and high reversibility. Considering the as-made artificial interphase is the result of a combination of protection materials, protection mechanisms, and construction techniques, this review comprehensively summarizes the recent progress of interphase modulation and provides a systematic guideline for constructing ideal artificial layers. In addition to revealing the entanglement relationship between the failure behaviors of Zn anodes and timely concluding the emerging protection mechanisms for stable Zn/electrolyte interphase, this review also evaluates the constructing techniques in regard of commercialization, including engineering workflow, strength, shortcoming, applicable materials, and protection effect, aiming to pave the way to practical application. Finally, this review presents noteworthy points of ideal artificial layer. It is expected that this review can enlighten researchers to not only explore ideal interphases of Zn anodes for practical application, but also design other metal anodes in aqueous batteries with similar failure behaviors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available