4.8 Article

Catfish Effect Induced by Anion Sequential Doping for Microwave Absorption

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 33, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202211996

Keywords

anion competitions; catfish effects; heteroatom doping; microwave absorption; porous carbon

Ask authors/readers for more resources

Heteroatom doping, especially with sulfur, can induce strong competition among anions, leading to enhanced dielectric coupling effect and activated defect-induced polarization, resulting in high-performance microwave absorption materials.
Heteroatom doping engineering is desirable in tuning crystal structures and electrical properties, which is considered an opportunity to further develop microwave absorption materials. However, the competition mechanism and priority among doped atoms have not been revealed, which are insufficient to guide the most reasonable dielectric coupling model and design high-performance absorbers. In this work, based on in situ N and O, ex situ S is introduced through external thermal driving, leading to fierce competition among anions. Specifically, S atoms replace pyrrole N, drive out lattice O, and create O vacancies, bringing more extensive local charge redistribution and stronger electron interaction, thus activating the defect-induced polarization (3-6 times higher than conduction loss) in the middle/high-frequency region. Therefore, the effective absorption bandwidth (EAB) of 9.03 GHz and the minimum reflection loss (RLmin) of -64.05 dB at a filling rate of 10 wt.% are obtained, which improves the record of carbon absorbers as reported. Through macro-designs, i.e., multi-layer gradient metamaterial, or utilizing other advantages, e.g., cost-effective, stable chemical properties and wide-angle absorption, porous carbon may possess a great application prospect in the naval field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available