4.2 Article

Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin

Journal

JOURNAL OF NEUROENDOCRINOLOGY
Volume 28, Issue 2, Pages -

Publisher

WILEY
DOI: 10.1111/jne.12349

Keywords

des-acyl ghrelin receptor; hypothalamus; acyl-ghrelin; food intake

Funding

  1. National Agency of Scientific and Technological Promotion of Argentina [PICT2011-2142]
  2. CONICET

Ask authors/readers for more resources

Ghrelin is a stomach-derived octanoylated peptide hormone that plays a variety of well-established biological roles acting via its specific receptor known as growth hormone secretagogue receptor (GHSR). In plasma, a des-octanoylated form of ghrelin, named des-acyl ghrelin (DAG), also exists. DAG is suggested to be a signalling molecule that has specific targets, including the brain, and regulates some physiological functions. However, no specific receptor for DAG has been reported until now, and, consequently, the potential role of DAG as a hormone has remained a matter of debate. In the present study, we show that DAG specifically binds to and acts on a subset of arcuate nucleus (ARC) cells in a GHSR-independent manner. ARC cells labelled by a DAG fluorescent tracer include the neuropeptide Y (NPY) and non-NPY neurones. Given the well-established role of the ARC in appetite regulation, we tested the effect of centrally administered DAG on food intake. We found that DAG failed to affect dark phase feeding, as well as food intake, after a starvation period; however, it impaired the orexigenic actions of peripherally administered ghrelin. Thus, we conclude that DAG directly targets ARC neurones and antagonises the orexigenic effects of peripherally administered ghrelin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available