4.6 Article

Novel Approach for Assessing Cyclic Thermomechanical Behavior of Multilayered Structures

Journal

ADVANCED ENGINEERING MATERIALS
Volume 25, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202201209

Keywords

copper; finite element modeling; stress modeling; thermomechanical fatigue; thin films

Ask authors/readers for more resources

Microelectronic devices require material systems combining multiple layers of material for proper operation. This study investigates the internal stress states and their influence on deformation behavior in a Si-WTi-Cu material system using in situ thermomechanical cantilever bending experiments. The experiments reveal that the Cu layer undergoes partial plastic deformation during heating, which may result in failure of devices. A model incorporating plastic deformation and known residual stresses is proposed and verified by Finite Element Analysis to assess the internal stress and strain states based on in situ observation.
Microelectronic devices require material systems combining multiple layers of material for proper operation. These inevitably have different properties, for example, the elastic modulus or the coefficient of thermal expansion. Permanently reoccurring Joule heating and successive cooling during the operation of such devices lead to high thermal stresses within the materials and even failure due to thermomechanical fatigue or delamination of layers. This is dependent on the internal stress state and the amount of plastic strain accumulated. Here, in situ thermomechanical cantilever bending experiments on a Si-WTi-Cu material system to investigate these internal stress states and their influence on deformation behavior using a novel experimental methodology are shown. During heating to T max =400 degrees C , the Cu layer undergoes partial plastic deformation, which may lead to the failure of a potential device using this material combination. To assess the internal stress and strain states based on the in situ observation, a model incorporating plastic deformation and known residual stresses of layers is proposed and verified by Finite Element Analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available