4.7 Article

UAV imagery based potential safety hazard evaluation for high-speed railroad using Real-time instance segmentation

Journal

ADVANCED ENGINEERING INFORMATICS
Volume 55, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.aei.2022.101819

Keywords

High-speed railroad; Potential safety hazards (PSHs); UAV imagery; Real-time instance segmentation; Image processing

Ask authors/readers for more resources

In order to ensure a safe environment for high-speed railroad operations, potential safety hazards (PSHs) along the track need to be inspected and evaluated regularly. Using an unmanned aerial vehicle (UAV) can complement visual inspections and provide a better view from the top, thereby easing safety concerns. This study develops an automatic PSH detection framework called YOLARC using UAV imagery and achieves high detection rate and processing speed.
Potential safety hazards (PSHs) along the track needs to be inspected and evaluated regularly to ensure a safe environment for high-speed railroad operations. Other than track inspection, evaluating potential safety hazards in the nearby areas often requires inspectors to patrol along the track and visually identify potential threads to the train operation. The current visual inspection approach is very time-consuming and may raise safety concerns for the inspectors, especially in remote areas. Using the unmanned aerial vehicle (UAV) has great potential to complement the visual inspection by providing a better view from the top and ease the safety concerns in many cases. This study develops an automatic PSH detection framework named YOLARC (You Only Look at Railroad Coefficients) using UAV imagery for high-speed railroad monitoring. First, YOLARC is equipped with a new backbone having multiple available receptive fields to strengthen the multi-scale representation capability at a granular level and enrich the semantic information in the feature space. Then, the system integrates the abundant semantic features at different high-level layers by a light weighted feature pyramid network (FPN) with multi -scale pyramidal architecture and a Protonet with residual structure to precisely predict the track areas and PSHs. A hazard level evaluation (HLE) method, which calculates the distance between identified PSH and the track, is also developed and integrated for quantifying the hazard level. Experiments conducted on the UAV imagery of high-speed railroad dataset show the proposed system can quickly and effectively turn UAV images into useful information with a high detection rate and processing speed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available