4.5 Article

New insights for tracking bacterial community structures in industrial wastewater from textile factories to surface water using phenotypic, 16S rRNA isolates identifications and high-throughput sequencing

Journal

ACTA TROPICA
Volume 238, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.actatropica.2022.106806

Keywords

Bacterial diversity; High -throughput sequencing; BIOLOG; 16S rRNA; Textile wastewater; Environmental wastewater

Ask authors/readers for more resources

This study aimed to identify dye degrading bacteria from textile wastewater and environmental water samples, and the results showed that the ratio of dye-degrading bacteria in textile water samples was 27%, with Citrobacter spp., Klebsiella spp., Enterobacter spp., Pseudomonas spp., and Aeromonas spp. being the most identified genera. The microbial communities in textile wastewater and environmental samples were similar at the phylum level but had differences at the genus and species levels due to different environmental conditions.
Industrial wastewater can possibly change the microbial ecological environment. There are few studies that focus on the bacterial variety in textile wastewater effluents and after combination with domestic wastewater. Thus, this study aimed to determine dye degrading bacteria from textile wastewater and environmental water samples using cultural method followed by phenotypic using BIOLOG and genotypic identification (16S rRNA) for dye degrading isolates identifications. Moreover, the bacterial communities in three textile and four environmental samples using Illumina MiSeq high-throughput sequencing were investigated. The findings revealed that in textile water samples, the ratio of dye-degrading bacteria (DDB) to total bacterial counts (TBC) was 27%. The identified DDB genera by 16S rRNA based on the cultural approach were Citrobacter spp., Klebsiella spp., Enterobacter spp., Pseudomonas spp., and Aeromonas spp. Regarding to the metagenomics analyses, the envi-ronmental samples had 5,598 Operational Toxanomic Units (OTUs) more than textile wastewater samples (1,463 OTUs). Additionally, the most abundant phyla in the textile wastewater were Proteobacteria (24.45-94.83%), Bacteriodetes (0.5-44.84%) and Firmicutes (3.72-67.40%), while, Proteobacteria (30.8-76.3%), bacteroidetes (8.5-50%) and Acentobacteria (0.5-23.12%) were the most abundant phyla in the environmental samples. The maximum abundant bacteria at species level in environmental samples were Aquabacterium parvum (36.71%), Delftia tsuruhatensis (17.61%), Parabacteriodes chartae (15.39%) and Methylorubrum populi (7.51%) in El-Rahawy Drain water (RDW), River Nile water (RNW), wastewater (RWW) from WWTP in Zennin and El-Rahawy Drain sediment (RDS), respectively, whereas the maximum abundant bacteria at species level in textile wastewater were Alkalibacterium pelagium (34.11%), Enterobacter kobei (26.09%) and Chryseobacterium montanum (16.93%) in factory 1 (HBT) sample, SHB sample (before mixing with domestic wastewater) and SHB sample (after mixing with domestic wastewater), respectively. In conclusion, the microbial communities in textile wastewaters are similar to those in environmental samples at the phylum level but distinct at the genus and species levels because they are exposed to a wider range of environmental circumstances.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available