4.6 Article

Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains

Journal

ACTA NEUROPATHOLOGICA
Volume 145, Issue 3, Pages 265-283

Publisher

SPRINGER
DOI: 10.1007/s00401-022-02535-z

Keywords

Cerebellum; Dystonia; Essential tremor; Histopathology; Neurodegenerative; Spinocerebellar ataxia

Ask authors/readers for more resources

In recent years, morphologic changes have been identified in the cerebellar cortex of essential tremor (ET) patients. However, these findings have not been fully understood in the context of other degenerative diseases. In this study, the authors compared degenerative changes in the cerebellar cortex of ET patients with other neurodegenerative disorders and control brains. They found that ET had distinct patterns of degenerative changes compared to other disorders, indicating its unique pathology.
In recent years, numerous morphologic changes have been identified in the essential tremor (ET) cerebellar cortex, distinguishing ET from control brains. These findings have not been fully contextualized within a broader degenerative disease spectrum, thus limiting their interpretability. Building off our prior study and now doubling the sample size, we conducted comparative analyses in a postmortem series of 320 brains on the severity and patterning of cerebellar cortex degenerative changes in ET (n = 100), other neurodegenerative disorders of the cerebellum [spinocerebellar ataxias (SCAs, n = 47, including 13 SCA3 and 34 SCA1, 2, 6, 7, 8, 14); Friedreich's ataxia (FA, n = 13); multiple system atrophy (MSA), n = 29], and other disorders that may involve the cerebellum [Parkinson's disease (PD), n = 62; dystonia, n = 19] versus controls (n = 50). We generated data on 37 quantitative morphologic metrics, grouped into 8 broad categories: Purkinje cell (PC) loss, heterotopic PCs, PC dendritic changes, PC axonal changes (torpedoes), PC axonal changes (other than torpedoes), PC axonal changes (torpedo-associated), basket cell axonal hypertrophy, and climbing fiber-PC synaptic changes. Principal component analysis of z scored raw data across all diagnoses (11,651 data items) revealed that diagnostic groups were not uniform with respect to pathology. Dystonia and PD each differed from controls in only 4/37 and 5/37 metrics, respectively, whereas ET differed in 21, FA in 10, SCA3 in 10, MSA in 21, and SCA1/2/6/7/8/14 in 27. Pathological changes were generally on the milder end of the degenerative spectrum in ET, FA and SCA3, and on the more severe end of that spectrum in SCA1/2/6/7/8/14. Comparative analyses across morphologic categories demonstrated differences in relative expression, defining distinctive patterns of changes in these groups. In summary, we present a robust and reproducible method that identifies somewhat distinctive signatures of degenerative changes in the cerebellar cortex that mark each of these disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available