4.6 Article

Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging

Journal

ACTA NEUROPATHOLOGICA
Volume 145, Issue 3, Pages 285-302

Publisher

SPRINGER
DOI: 10.1007/s00401-022-02531-3

Keywords

TMEM106B; GRN; Neurodegenerative disease; Frontotemporal dementia; FTLD-TDP

Ask authors/readers for more resources

Several studies using cryo-EM techniques have found novel protein filaments composed of a CTF of TMEM106B in brain tissue with neurodegenerative conditions and aging. TMEM106B variants are known to affect the risk and presentation of neurodegenerative diseases. TMEM106B CTF accumulation was found to be a common age-related phenomenon, suggesting lysosomal dysfunction.
Several studies using cryogenic electron microscopy (cryo-EM) techniques recently reported the isolation and characterization of novel protein filaments, composed of a C-terminal fragment (CTF) of the endolysosomal transmembrane protein 106B (TMEM106B), from human post-mortem brain tissue with various neurodegenerative conditions and normal aging. Genetic variation in TMEM106B is known to influence the risk and presentation of several neurodegenerative diseases, especially frontotemporal dementia (FTD) caused by mutations in the progranulin gene (GRN). To further elucidate the significance of TMEM106B CTF, we performed immunohistochemistry with antibodies directed against epitopes within the filament-forming C-terminal region of TMEM106B. Accumulation of TMEM106B C-terminal immunoreactive (TMEM-ir) material was a common finding in all the conditions evaluated, including frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), Alzheimer's disease, tauopathies, synucleinopathies and neurologically normal aging. TMEM-ir material was present in a wide range of brain cell types and in a broad neuroanatomical distribution; however, there was no co-localization of TMEM-ir material with other neurodegenerative proteins in cellular inclusions. In most conditions, the presence and abundance of TMEM-ir aggregates correlated strongly with patient age and showed only a weak correlation with the TMEM106B haplotype or the primary pathological diagnosis. However, all patients with FTD caused by GRN mutations were found to have high levels of TMEM-ir material, including several who were relatively young (< 60 years). These findings suggest that the accumulation of TMEM106B CTF is a common age-related phenomenon, which may reflect lysosomal dysfunction. Although its significance in most neurodegenerative conditions remains uncertain, the consistent finding of extensive TMEM-ir material in cases of FTLD-TDP with GRN mutations further supports a pathomechanistic role of TMEM106B and lysosomal dysfunction in this specific disease population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available