4.8 Article

Radiofrequency-Activated Pyroptosis of Bi-Valent Gold Nanocluster for Cancer Immunotherapy

Journal

ACS NANO
Volume 17, Issue 1, Pages 515-529

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c09242

Keywords

cancer immunotherapy; pyroptosis; radiofrequency irradiation; gold nanocluster; synergy

Ask authors/readers for more resources

Pyroptosis of tumor cells was induced by biGC@PNA with a precisely stoichiometric ratio of Au(I) ion/Au(0) atom through its radiofrequency (RF)-heating effect. The activated pyroptosis resulted in a robust immunogenic cell death (ICD) effect, enhancing the antitumor immune responses and suppressing tumor metastasis and relapse. The noninvasive RF field provides a promising strategy for improving cancer immunotherapy.
Pyroptosis is gasdermin-mediated programmed necrosis that exhibits promising potential application in cancer immunotherapy, and the main challenge lies in how to provoke specific pyroptosis of tumor cells. Here, biGC@PNA with a precisely stoichiometric ratio of Au(I) ion/Au(0) atom induced pyroptosis of tumor cells by its radiofrequency (RF)-heating effect. An in vitro/in vivo assay on 4T1 tumor cells indicates RF-activated pyroptosis of tumor cells elicits a robust ICD effect, enhancing the synergistic antitumor efficacy of biGC@PNA with decitabine, significantly suppressing tumor metastasis and relapse by provoking systemic antitumor immune responses. Utilizing RF-activated pyroptotic immune responses, biGC@PNA efficiently enhances the antitumor efficacy of alpha PD-1 immunotherapy under RF irradiation and provides a promising strategy for improving cancer immunotherapy by the noninvasive RF field with high clinical transformation potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available