4.8 Article

Putting High-Index Cu on the Map for High- Yield, Dry-Transferred CVD Graphene

Journal

ACS NANO
Volume 17, Issue 2, Pages 1229-1238

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c09253

Keywords

CVD; graphene; single crystal; dry transfer; data science; 2D material; high electron mobility

Ask authors/readers for more resources

We introduce a fast-screening descriptor approach to achieve holistic optimization of the graphene-Cu model system and successfully prepare high-quality graphene with a very high yield. Our approach is adaptable to other descriptors and 2D material systems.
Reliable, clean transfer and interfacing of 2D material layers are technologically as important as their growth. Bringing both together remains a challenge due to the vast, interconnected parameter space. We introduce a fast-screening descriptor approach to demonstrate holistic data-driven opti-mization across the entirety of process steps for the graphene-Cu model system. We map the crystallographic dependences of graphene chemical vapor deposition, interfacial Cu oxidation to decouple graphene, and its dry delamination across inverse pole figures. Their overlay enables us to identify hitherto unexplored (168) higher index Cu orientations as overall optimal orientations. We show the effective preparation of such Cu orientations via epitaxial close-space sublimation and achieve mechanical transfer with a very high yield (>95%) and quality of graphene domains, with room-temperature electron mobilities in the range of 40000 cm2/(V s). Our approach is readily adaptable to other descriptors and 2D material systems, and we discuss the opportunities of such a holistic optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available