4.2 Article

Clozapine-Loaded Polysorbate-Coated Polymeric Nanocapsules: Physico-Chemical Characterization and Toxicity Evaluation in Caenorhabditis elegans Model

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 16, Issue 2, Pages 1257-1264

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2016.11668

Keywords

Clozapine; Nanocapsules; Drug Release; Caenorhabditis elegans; Toxicity

Funding

  1. CNPq/Brasilia/Brazil
  2. FAPERGS
  3. PBDA-UNIPAMPA

Ask authors/readers for more resources

The aim of this work was to develop and characterize clozapine loaded polysorbate-coated polymeric nanocapsules and assess their toxicity in Caenorhabditis elegans, an invertebrate animal model. Formulations were prepared by nanoprecipitationmethod and characterized by particle size, zeta potential, pH, drug loading, entrapment efficiency and in vitro drug release. All nanocapsules prepared presented diameter around 140 nm, pH slightly acid and negative zeta potential. In vitro studies showed biphasic drug release from nanocapsules with decreasing of the release rate on nanoencapsulation. The t(1/2)beta of clozapine was 7.23 +/- 0.73 and 2.23 +/- 0.97 h for nanoencapsulated and free drug, respectively (p < 0.05), in pH 1.2 medium. Similar results were obtained in pH 6.8 buffer. Regarding toxicity evaluation, worms exposed to clozapine-loaded nanocapsules did not show the same mortality rate compared to others formulations, as the survival was significantly higher than the free drug treated-group. In addition, we observed that free clozapine decreased egg laying at the first reproductive day, whereas nanoencapsulated clozapine did not depict significant change of this parameter. Longevity assay showed no significant difference, demonstrating that the toxicological effects of clozapine observed in C. elegans are acute. In addition, we proved that free and nanoencapsulated clozapine were orally uptake by the worms, as determined by fluoresceinlabeled nanocapsules. Then, the use of nanocapsules delayed the drug release and minimized the toxic effects of clozapine in worms, which can be used as a new animal model to evaluate the nanotoxicity of drug delivery systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available