3.8 Article

The use of wheatgrass (Thinopyrum intermedium) in breeding

Journal

VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII
Volume 26, Issue 5, Pages 413-421

Publisher

RUSSIAN ACAD SCI, INST CYTOLOGY GENETICS
DOI: 10.18699/VJGB-22-51

Keywords

perennial crop; wheat; domestication; selection; genes; ecology

Funding

  1. Ministry of Science and Higher Education of the Russian Federation [075-15-2021-534]

Ask authors/readers for more resources

Wheatgrass is a versatile crop with great potential, but breeding programs for domestication of perennial crops in Russia are limited. By using traditional and modern breeding methods, the yield and efficiency of wheatgrass can be enhanced.
Wheatgrass (Th. intermedium) has been traditionally used in wheat breeding for obtaining wheat-wheatgrass hybrids and varieties with introgressions of new genes for economically valuable traits. However, in the 1980s in the United States wheatgrass was selected from among perennial plant species as having promise for domestication and the development of dual-purpose varieties for grain (as an alternative to perennial wheat) and hay. The result of this work was the creation of the wheatgrass varieties Kernza ( The Land Institute, Kansas) and MN-Clearwater (University of Minnesota, Minnesota). In Omsk State Agrarian University, the variety Sova was developed by mass selection of the most winter-hardy biotypes with their subsequent combination from the population of wheatgrass obtained from The Land Institute. The average grain yield of the variety Sova is 9.2 dt/ha, green mass is 210.0 dt/ ha, and hay is 71.0 dt/ha. Wheatgrass is a crop with a large production potential, beneficial environmental properties, and valuable grain for functional food. Many publications show the advantages of growing the Kernza variety compared to annual crops in reducing groundwater nitrate contamination, increasing soil carbon sequestration, and reducing energy and economic costs. However, breeding programs for domestication of perennial crops are very limited in Russia. This paper presents an overview of main tasks faced by breeders, aimed at enhancing the yield and cultivating wheatgrass efficiency as a perennial grain and fodder crop. To address them, both traditional and modern biotechnological and molecular cytogenetic approaches are used. The most important task is to transfer target genes of Th. intermedium to modern wheat varieties and decrease the level of chromatin carrying undesirable genes of the wild relative. The first consensus map of wheatgrass containing 10,029 markers was obtained, which is important for searching for genes and their introgressions to the wheat genome. The results of research on the nutritional and technological properties of wheatgrass grain for the development of food products as well as the differences in the quality of wheatgrass grain and wheat grain are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available