4.0 Article

Loss of Calponin 2 causes age-progressive proteinuria in mice

Journal

PHYSIOLOGICAL REPORTS
Volume 10, Issue 18, Pages -

Publisher

WILEY
DOI: 10.14814/phy2.15370

Keywords

calponin 2; cytoskeleton; podocytes; proteinuria

Categories

Funding

  1. National Institutes of Health [HD00125, HL138007]

Ask authors/readers for more resources

Deletion of calponin 2 exacerbates age-progressive degeneration of the glomerular structure and function as filtration barrier, suggesting a critical role of calponin 2 in podocytes and providing a new molecular target for understanding the pathogenesis of proteinuria and therapeutic development.
Proteinuria is a major manifestation of kidney disease, reflecting injuries of glomerular podocytes. Actin cytoskeleton plays a pivotal role in stabilizing the foot processes of podocytes against the hydrostatic pressure of filtration. Calponin is an actin associated protein that regulates mechanical tension-related cytoskeleton functions and its role in podocytes has not been established. Here we studied the kidney phenotypes of calponin isoform 2 knockout (KO) mice. Urine samples were examined to quantify the ratio of albumin and creatinine. Kidney tissue samples were collected for histology and ultrastructural studies. A mouse podocyte cell line (E11) was used to study the expression and cellular localization of calponin 2. In comparison with wild-type (WT) controls, calponin 2 KO mice showed age-progressive high proteinuria and degeneration of renal glomeruli. High levels of calponin 2 are expressed in E11 podocytes and colocalized with actin stress fibers, tropomyosin and myosin IIA. Electron microscopy showed that aging calponin 2 KO mice had effacement of the podocyte foot processes and increased thickness of the glomerular basement membrane as compared to that of WT control. The findings demonstrate that deletion of calponin 2 aggravates age-progressive degeneration of the glomerular structure and function as filtration barrier. The critical role of calponin 2 in podocytes suggests a molecular target for understanding the pathogenesis of proteinuria and therapeutic development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available