4.3 Article

A method for estimating spatial resolution of real image in the Fourier domain

Journal

JOURNAL OF MICROSCOPY
Volume 261, Issue 1, Pages 57-66

Publisher

WILEY
DOI: 10.1111/jmi.12315

Keywords

Micro-CT; Reciprocal space; Resolution; Tomography

Categories

Funding

  1. Japan Society for the Promotion of Science [25282250, 25610126]
  2. Grants-in-Aid for Scientific Research [25253074, 25282250, 25610126] Funding Source: KAKEN

Ask authors/readers for more resources

Spatial resolution is a fundamental parameter in structural sciences. In crystallography, the resolution is determined from the detection limit of high-angle diffraction in reciprocal space. In electron microscopy, correlation in the Fourier domain is used for estimating the resolution. In this paper, we report a method for estimating the spatial resolution of real images from a logarithmic intensity plot in the Fourier domain. The logarithmic intensity plots of test images indicated that the full width at half maximum of a Gaussian point spread function can be estimated from the images. The spatial resolution of imaging X-ray microtomography using Fresnel zone-plate optics was also estimated with this method. A cross section of a test object visualized with the imaging microtomography indicated that square-wave patterns up to 120-nm pitch were resolved. The logarithmic intensity plot was calculated from a tomographic cross section of brain tissue. The full width at half maximum of the point spread function estimated from the plot coincided with the resolution determined from the test object. These results indicated that the logarithmic intensity plot in the Fourier domain provides an alternative measure of the spatial resolution without explicitly defining a noise criterion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available