4.5 Article

An Ascorbic Acid-Imprinted Poly(o-phenylenediamine)/AuNPs@COFTFPB-NBPDA for Electrochemical Sensing Ascorbic Acid

Journal

CHEMOSENSORS
Volume 10, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/chemosensors10100407

Keywords

covalent organic framework; ascorbic acid; molecularly imprinted polymer; electrochemical sensor

Funding

  1. National Natural Science Foundation of China [21964010]

Ask authors/readers for more resources

In this study, an electrochemical sensor based on a molecularly imprinted polymer membrane (MIP) was developed for the detection of ascorbic acid (AA). The sensor showed low detection limits and linear ranges, as well as good stability, selectivity, and reproducibility for AA detection.
An electrochemical sensor based on a molecularly imprinted polymer membrane (MIP) was developed. The electrochemical sensor was prepared by electropolymerization of o-phenylenediamine (O-PD) on the surface of glassy carbon electrode (GCE), modified by AuNPs@covalent organic framework (COF) microspheres with ascorbic acid (AA) as template molecule. First, ultrasmall polyvinylpyrrolidone (PVP)-coated AuNPs were prepared by a chemical reduction method. Then, 1,3,5-tri(p-formylphenyl)benzene (TFPB) and N-boc-1,4-phenylene diamine (NBPDA) underwent an ammonaldehyde condensation reaction on PVP-coated AuNPs to form AuNPs@COFTFPB-NBPDA microspheres. The porous spherical structure of AuNPs@ COFTFPB-NBPDA could accelerate the mass transfer, enlarge the specific surface area, and enhance the catalytic activity of PVP-coated AuNPs. The electrochemical sensors, based on AuNPs@ COFTFPB-NBPDA/GCE and nMIPs/AuNPs@COFTFPB-NBPDA/GCE, were applied for the detection of AA, with a detection limit of 1.69 and 2.57 mu M, as well as linear ranges of 5.07 to 60 mM and 7.81 to 60 mM. The nMIPs/AuNPs@COFTFPB-NBPDA sensor had satisfactory stability, selectivity, and reproducibility for AA detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available