4.6 Article

Empirical Validation of an Auxetic Structured Foot With the Powered Transfemoral Prosthesis

Journal

IEEE ROBOTICS AND AUTOMATION LETTERS
Volume 7, Issue 4, Pages 11228-11235

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2022.3194673

Keywords

Auxetic structure; prosthetics and exoskeletons; prosthetic foot design; toe joint

Categories

Funding

  1. Korea Institute of Energy Technology Evaluation and Planning, theMinistry of Trade, Industry and Energy, Korean Government through Human Resources Development Program [20204010600090]

Ask authors/readers for more resources

The toe joint plays a critical role in human ambulation and using custom-designed prosthetic feet with toe joints can lead to a more natural and symmetric gait. The curved-toe foot showed greater toe flexion and improved stability and symmetry in walking compared to the flat-toe foot.
The toe joint has been studied since it plays a critical role in human ambulation, such as stability, energy storage and propulsion. Despite its critical role, only a few studies have used and tested toe-jointed feet in powered prosthetic walking. In previous studies, we proposed 3D printable prosthetic feet with auxetic structures that provide human-like toe joint properties, termed a flat-toe (FT) foot and a curved-toe (CT) foot. The numerical simulation revealed that these feet could mimic the function of the biological toe joint, but they have not yet been validated in an empirical manner. In this study, we conducted a walking experiment with three subjects (i.e., two able-bodied and one amputee) using a powered prosthesis and two custom-designed prosthetic feet: the FT foot and CT foot. To evaluate the given feet, several metrics (e.g., joint kinematics/kinetics, ground reaction forces, and gait symmetry) were utilized. According to the results, the CT foot exhibited greater toe flexion, resulting in an earlier heel-off, a later toe-off, and a longer push-off duration when compared to the FT foot. Furthermore, less ground reaction forces were measured from both the prosthesis and intact sides, and a more symmetric gait was achieved with the CT foot. Another interesting finding was that the CT foot affected the user's thigh kinematics, leading to an improved gait phase estimation while walking. We concluded that the CT foot allowed for a more natural roll-over, resulting in better consistency and symmetry while walking with the powered prosthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available