4.6 Article

Didecyldimethylammonium Chloride- and Polyhexamethylene Guanidine-Resistant Bacteria Isolated from Fecal Sludge and Their Potential Use in Biological Products for the Detoxification of Biocide-Contaminated Wastewater Prior to Conventional Biological Treatment

Journal

BIOLOGY-BASEL
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/biology11091332

Keywords

biocide; fecal sludge; environmentally safe toilet complexes; Alcaligenes faecalis; didecyldimethylammonium chloride; polyhexamethylene guanidine; microbial resistance; biological products; detoxification

Categories

Funding

  1. Ministry of Science and Higher Education of the Russian Federation [122040800164-6]
  2. FIC CP RAS [FFZE-2022-0011, 122040400089-6]

Ask authors/readers for more resources

The study proposes a new environmentally friendly approach to reducing the toxicity of fecal sludge by using biological products made from biocide-resistant bacterial strains isolated from the sludge. The approach has proven to be effective in degrading the sludge and reducing the impact of biocides on the environment.
Simple Summary Every year, more than a million tons of fecal sludge (FS) containing biocides based on quaternary ammonium compounds and guanidine derivatives, which are widely used for FS deodorization and control of microbial activity, are generated in the environmentally safe toilet complexes of Russian Railways trains. Higher disposal costs for such biocide-contaminated FS due to activated sludge toxicity increases pressure on sanitary equipment servicing companies (<< Ecotol Service >> LLC) to more efficiently discharge FS to wastewater treatment plants. In this work, we have developed a new environmentally friendly approach to reducing the toxicity of FS, based on the use of biological products from biocide-resistant bacterial strains isolated from FS. Our approach has proven to be effective in a series of FS biodegradation experiments, biological oxygen demand tests, and a newly developed disk-diffusion bioassay. Toxic shock caused by the discharge of biocide-contaminated fecal sludge (FS) from chemical toilets to conventional wastewater treatment plants (WWTP) can be a major problem in activated sludge operation. It is necessary to develop new environmental approaches to mitigate the toxicity of biocides in order to avoid degrading the performance of WWTP. Latrina, a chemical toilet additive containing didecyldimethylammonium chloride and polyhexamethylene guanidine, is widely used in environmentally safe toilet complexes (ESTC) on Russian railway trains to deodorize FS and control microbial activity. In this work, seven biocide-resistant bacterial strains were isolated and identified from the FS of ESTC. The values of the minimum inhibitory and bactericidal concentrations of biocides for the isolated strains were 4.5-10 times higher than for the collection microorganisms. The bacterium Alcaligenes faecalis DOS7 was found to be particularly resistant to Latrina, the minimum inhibitory concentration of which was almost 30 times higher than recommended for ESTC. Biological products based on isolated bacterial strains proved to be effective for FS biodegradation under both aerobic and anaerobic conditions. The results of the biochemical oxygen demand test and the newly developed disk-diffusion bioassay confirmed that isolated strains contribute to reducing toxicity of biocidal agents in FS. Hyper-resistance, non-pathogenicity, and potential plant growth-promoting ability make A. faecalis DOS7 promising for use in various biological products for wastewater treatment and bioremediation of soils contaminated with biocides, as well as in agriculture to increase plant productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available