4.7 Article

Elite Chaotic Manta Ray Algorithm Integrated with Chaotic Initialization and Opposition-Based Learning

Journal

MATHEMATICS
Volume 10, Issue 16, Pages -

Publisher

MDPI
DOI: 10.3390/math10162960

Keywords

manta ray foraging optimizer; chaotic map; opposition-based learning; elite chaotic search; CG-Ball curves; shape optimization

Categories

Funding

  1. Natural Science Foundation of Xijing University [XJ190214]

Ask authors/readers for more resources

The paper introduces a novel manta ray foraging optimization algorithm and proposes an elite chaotic MRFO algorithm to improve its performance. The superiority of the algorithm is demonstrated through comparative experiments with other algorithms, and the practicality is illustrated through a shape optimization application.
The manta ray foraging optimizer (MRFO) is a novel nature-inspired optimization algorithm that simulates the foraging strategy and behavior of manta ray groups, i.e., chain, spiral, and somersault foraging. Although the native MRFO has revealed good competitive capability with popular meta-heuristic algorithms, it still falls into local optima and slows the convergence rate in dealing with some complex problems. In order to ameliorate these deficiencies of the MRFO, a new elite chaotic MRFO, termed the CMRFO algorithm, integrated with chaotic initialization of population and an opposition-based learning strategy, is developed in this paper. Fourteen kinds of chaotic maps with different properties are used to initialize the population. Thereby, the chaotic map with the best effect is selected; meanwhile, the sensitivity analysis of an elite selection ratio in an elite chaotic searching strategy to the CMRFO is discussed. These strategies collaborate to enhance the MRFO in accelerating overall performance. In addition, the superiority of the presented CMRFO is comprehensively demonstrated by comparing it with a native MRFO, a modified MRFO, and several state-of-the-art algorithms using (1) 23 benchmark test functions, (2) the well-known IEEE CEC 2020 test suite, and (3) three optimization problems in the engineering field, respectively. Furthermore, the practicability of the CMRFO is illustrated by solving a real-world application of shape optimization of cubic generalized Ball (CG-Ball) curves. By minimizing the curvature variation in these curves, the shape optimization model of CG-Ball ones is established. Then, the CMRFO algorithm is applied to handle the established model compared with some advanced meta-heuristic algorithms. The experimental results demonstrate that the CMRFO is a powerful and attractive alternative for solving engineering optimization problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available