4.6 Article

Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism

Journal

ACS OMEGA
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c03453

Keywords

-

Funding

  1. Council on Research & Creativity (CRC) planning grant from the Florida State University
  2. Pfeiffer Professorship for Cancer Research in Chemistry and Biochemistry from the College of Arts Sciences
  3. Endowed Chair Professorship in Cancer Research
  4. Joseph M. Schor Graduate Fellowships in Biochemistry from FSU
  5. McKnight Dissertation Fellowship from Florida Education Fund

Ask authors/readers for more resources

Microplastics have gained attention due to their prevalence in our daily lives. This study found that ingestion of microplastics could have adverse effects on human kidney and liver cells, potentially leading to problems with cell metabolism and cell-cell interactions.
Microplastics have gained much attention due to their prevalence and abundance in our everyday lives. They have been detected in household items such as sugar, salt, honey, seafood, tap water, water bottles, and food items wrapped in plastic. Once ingested, these tiny particles can travel to internal organs such as the kidney and liver and cause adverse effects on the cellular level. Here, human embryonic kidney (HEK 293) cells and human hepatocellular (Hep G2) liver cells were used to examine the potential toxicological effects of 1 mu m polystyrene microplastics (PS-MPs). Exposing cells to PS-MPs caused a major reduction in cellular proliferation but no significant decrease in cell viability as determined by the trypan blue assay in both cell lines. Cell viability remained at least 94% for both cell lines even at the highest concentration of 100 mu g/mL of PS-MPs. Phase-contrast imaging of both kidney and liver cells exposed to PS-MPs at 72 h showed significant morphological changes and uptake of PS-MP particles. Confocal fluorescent microscopy confirmed the uptake of 1 mu m PS-MPs at 72 h for both cell lines. Additionally, flow cytometry experiments verified that more than 70% of cells internalized 1 mu m PS-MPs after 48 h of exposure for both kidney and liver cells. Reactive oxygen species (ROS) studies revealed kidney and liver cells exposed to PS-MPs had increased levels of ROS at each concentration and for every time point tested. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis at 24 and 72 h revealed that both HEK 293 and Hep G2 cells exposed to PS-MPs lowered the gene expression levels of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and antioxidant enzymes superoxide dismutase 2 (SOD2) and catalase (CAT), thus reducing the potential of SOD2 and CAT to detoxify ROS. These adverse effects of PS-MPs on human kidney and liver cells suggest that ingesting microplastics may lead to toxicological problems on cell metabolism and cell-cell interactions. Because exposing human kidney and liver cells to microplastics results in morphological, metabolic, proliferative changes and cellular stress, these results indicate the potential undesirable effects of microplastics on human health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available