4.7 Article

Determining Reproductive Parameters, which Contribute to Variation in Yield of Olive Trees from Different Cultivars, Irrigation Regimes, Age and Location

Journal

PLANTS-BASEL
Volume 11, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/plants11182414

Keywords

age; juvenility; flowering; fruit set; fruit production; rainfed; Olea europaea; olive oil

Categories

Funding

  1. Chief Scientist Ministry of Agriculture and Rural Development, Israel [203-1101-16]

Ask authors/readers for more resources

Although high-density plantations initially have higher yields, there is no consistent reduction in productivity in older olive groves, and differences in productivity between irrigated cultivars are mostly due to variation in the percentage of inflorescences that formed fruit.
Olive (Olea europaea L.) trees can reach a very old age and still bear fruit. Although traditional groves are planted at low density and are rainfed, many newer groves are planted at higher densities and irrigated. As expected, initial yields per area are larger in high density plantations, yet some farmers claim they experience a reduction in productivity with grove age, even in well maintained trees. In order to test the accuracy of this claim and its underlying cause, we measured several productivity parameters in selected branches of trees in seven sites differing in cultivar ('Barnea' or 'Souri'), location and irrigation regime (rainfed or irrigated) for two consecutive years. For each site (cultivar/location/regime), we compared neighboring groves of different ages, altogether 14 groves. There was no consistent reduction in productivity in older groves. Differences in productivity between irrigated cultivars were mostly due to variation in the percentage of inflorescences that formed fruit. Several parameters were higher in irrigated, compared to rainfed 'Souri'. Differences in productivity between years within the same grove was mostly due to variation in the percentage of nodes forming inflorescences. We studied the expression of OeFT2 encoding a FLOWERING LOCUS T protein involved in olive flower induction in leaves of trees of different ages, including juvenile seedlings. Expression increased during winter in mature trees and correlated with the percentage of inflorescences formed. The leaves of juvenile seedlings expressed higher levels of two genes encoding APETALA2-like proteins, potential inhibitors of OeFT2 expression. The buds of juvenile seedlings expressed higher levels of OeTFL1, encoding a TERMINAL FLOWER 1 protein, a potential inhibitor of OeFT2 function in the meristem. Our results suggest that olives, once past the juvenile phase, can retain a similar level of productivity even in densely planted well maintained groves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available