4.7 Article

Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 59, Issue 11, Pages 5238-5247

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.5b02016

Keywords

-

Funding

  1. National Natural Science Foundation of China [81573339, 31170777, 21302213]

Ask authors/readers for more resources

Cationic amphipathic peptides (CAPs) are known to be able to cause membrane destabilization and induce cell death, yet how the hydrophobicity, amphipathicity, and lysine (K)/arginine (R) composition synergistically affect the peptide activity remains incompletely understood. Here, we designed a panel of peptides based on the well-known anticancer peptide KLA. Increasing hydrophobicity enhanced the cytotoxicities of both the K- and R-rich peptides. Peptides with an intact amphipathic helical interface can cause instant cell death through a membrane lysis mechanism. Interestingly, rearranging the residue positions to minimize amphipathicity caused a great decrease of cytotoxicity to the K-rich peptides but not to the R-rich peptides. The amphipathicity-minimized R-rich peptide 6 (RL2) (RLLRLLRLRRLLRL-NH2) penetrated the cell membrane and induced caspase-3-dependent apoptotic cell death. We found that the modulation of hydrophobicity, amphipathicity, and K/R residues leads to distinct mechanisms of action of cationic hydrophobic peptides. Amphipathicity-reduced, arginine-rich cationic hydrophobic peptides (CHPs) may represent a new class of peptide therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available