4.7 Article

Controllable construction of boron and nitrogen co-doping honeycomb porous carbon as promising materials for CO2 capture and supercapacitors

Journal

JOURNAL OF ENERGY STORAGE
Volume 55, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.est.2022.105687

Keywords

Porous carbon; Boron and nitrogen co -doping; CO 2 capture; Density functional theory (DFT); Supercapacitors

Categories

Funding

  1. National Natural Science Foundation of China
  2. [51971241]
  3. [52171091]

Ask authors/readers for more resources

This study developed a scannable strategy to prepare boron and nitrogen co-doping honeycomb porous carbon materials, which exhibited high specific surface area and were applied for CO2 capture and supercapacitors. The materials showed excellent CO2 capture ability and supercapacitor performance.
Multifunctional porous carbon materials are regarded as prospective candidates to sustainable working environment and energy storage devices due to their excellent renewable and recycled properties. Herein, we developed a scannable strategy to prepare a boron and nitrogen co-doping honeycomb porous carbon materials (BNHCs) with high specific surface area applied for CO2 capture and supercapacitors, displaying an outstanding CO2 capture ability of 5.38 mmol g-1 at 273 K under atmospheric pressure and great specific capacitance 389.4F g-1 at 0.2 A g-1 with superior capacitance retention of 98.2 % initial capacity after 10,000 cycles. The adsorption energy, differential charge densities and density of states were calculated by density functional theory (DFT) to further evaluate the mechanism of the effect of B/N co-doping carbon on the performance of supercapacitors, which theoretically verified that the incorporation of B/N atoms has a positive effect on the charge transfer. Moreover, the BNHC-650//NiCo2S4/NF asymmetric supercapacitor exhibits an energy density of 45.8 Wh kg- 1 at a power density of 800 W kg- 1. The novel synthetical route offers an effective strategy to simultaneously improve CO2 capture and energy storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available