4.5 Article

Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1

Journal

FLUIDS AND BARRIERS OF THE CNS
Volume 19, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12987-022-00361-9

Keywords

Transient receptor potential vanilloid 4; Choroid plexus; LPA; Membrane transport; Intraventricular hemorrhage; IVH; SAH; Subarachnoid hemorrhage; Cerebrospinal fluid; Brain water

Categories

Funding

  1. Lundbeck Foundation [R303-2018-3005, R276-2018-403]
  2. Weimann Foundation
  3. Novo Nordic Foundation [NNF17OC0024718]
  4. IMK Almene Fond
  5. Carlsberg Foundation [CF19-0056]
  6. Laege Sofus C.E. Friis og Hustru Olga D. Friis' scholarship
  7. Research Council at Copenhagen University Hospital Rigshospitalet [E-23565-03]

Ask authors/readers for more resources

The study reveals that a serum lipid can promote excessive CSF secretion and subsequent brain water accumulation by acting on TRPV4, which may be a potential pharmacological target for pathologies involving brain water accumulation.
Background A range of neurological pathologies may lead to secondary hydrocephalus. Treatment has largely been limited to surgical cerebrospinal fluid (CSF) diversion, as specific and efficient pharmacological options are lacking, partly due to the elusive molecular nature of the CSF secretion apparatus and its regulatory properties in physiology and pathophysiology. Methods CSF obtained from patients with subarachnoid hemorrhage (SAH) and rats with experimentally inflicted intraventricular hemorrhage (IVH) was analyzed for lysophosphatidic acid (LPA) by alpha-LISA. We employed the in vivo rat model to determine the effect of LPA on ventricular size and brain water content, and to reveal the effect of activation and inhibition of the transient receptor potential vanilloid 4 (TRPV4) ion channel on intracranial pressure and CSF secretion rate. LPA-mediated modulation of TRPV4 was determined with electrophysiology and an ex vivo radio-isotope assay was employed to determine the effect of these modulators on choroid plexus transport. Results Elevated levels of LPA were observed in CSF obtained from patients with subarachnoid hemorrhage (SAH) and from rats with experimentally-inflicted intraventricular hemorrhage (IVH). Intraventricular administration of LPA caused elevated brain water content and ventriculomegaly in experimental rats, via its action as an agonist of the choroidal transient receptor potential vanilloid 4 (TRPV4) channel. TRPV4 was revealed as a novel regulator of ICP in experimental rats via its ability to modulate the CSF secretion rate through its direct activation of the Na+/K+/2Cl(-) cotransporter (NKCC1) implicated in CSF secretion. Conclusions Together, our data reveal that a serum lipid present in brain pathologies with hemorrhagic events promotes CSF hypersecretion and ensuing brain water accumulation via its direct action on TRPV4 and its downstream regulation of NKCC1. TRPV4 may therefore be a promising future pharmacological target for pathologies involving brain water accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available