4.7 Article

Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 59, Issue 18, Pages 8345-8368

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.6b00697

Keywords

-

Ask authors/readers for more resources

NAMPT inhibitors may show potential as therapeutics for oncology. Throughout our NAMPT inhibitor program, we found that exposed pyridines or related heterocyclic systems in the left-hand portion of the inhibitors are necessary pharmacophores for potent cellular NAMPT inhibition. However, when combined with a benzyl group in the center of the inhibitors, such pyridine-like moieties also led to consistent and potent inhibition of CYP2C9. In an attempt to reduce CYP2C9 inhibition, a parallel synthesis approach was used to identify central benzyl group replacements with increased Fsp3. A spirocyclic central motif was thus discovered that was combined with left-hand pyridines (or pyridine-like systems) to provide cellularly potent NAMPT inhibitors with minimal CYP2C9 inhibition. Further optimization of potency and ADME properties led to the discovery of compound 68, a highly potent NAMPT inhibitor with outstanding efficacy in a mouse tumor xenograft model and lacking measurable CYP2C9 inhibition at the concentrations tested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available