4.7 Article

Mechanisms Underlying the Protective Effect of Maternal Zinc (ZnSO4 or Zn-Gly) against Heat Stress-Induced Oxidative Stress in Chicken Embryo

Journal

ANTIOXIDANTS
Volume 11, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/antiox11091699

Keywords

maternal zinc; chick embryo; antioxidant; oxidative stress; Nrf2

Funding

  1. Anhui Youth Natural Science Foundation [2108085QC133]
  2. Zhejiang Province Major Agricultural Technologies Collaborative Extension Plan [2021XTTGXM04]
  3. China Agriculture Research System of MOF and MARA, Beijing, China [CARS-41]
  4. Zhejiang Province Key R&D Program, Hangzhou, China [2013C02010]

Ask authors/readers for more resources

This study found that maternal zinc can alleviate oxidative stress injury caused by heat stress in chicken embryos. It enhances antioxidant capacity, reduces apoptosis, and activates the Nrf2 signaling pathway.
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes' oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available