4.7 Review

Progress in Genomic Mating in Domestic Animals

Journal

ANIMALS
Volume 12, Issue 18, Pages -

Publisher

MDPI
DOI: 10.3390/ani12182306

Keywords

genomic mating; domestic animals; inbreeding

Funding

  1. National Natural Science Foundation of China [31572357]
  2. National Key Research and Development Program of China [2021YFD1301101]
  3. Agricultural Science and Technology Innovation Program [ASTIP-IAS02]

Ask authors/readers for more resources

This article introduces the methods of selection and mating in animal breeding based on breeding values and genomic information. Selection based on breeding values can significantly improve genetic gain, but it can also lead to increased inbreeding. Genomic mating methods can better control the level of inbreeding and achieve long-term sustainable genetic gain. Genomic mating is more suitable for modern animal breeding, especially for the conservation and improvement of local breeds.
Simple Summary Since animal domestication, breeders have been selecting candidates for breeding based on phenotypic performance. Estimating breeding values through the best linear unbiased prediction method represents a revolutionary shift in animal breeding. On this basis, selection and mating are utilized to improve the production level of animals. The application of genomic selection has once again revolutionized animal breeding methods. However, although this kind of truncated selection based on breeding values can significantly improve genetic gain, the genetic relationship between individuals with a high breeding value is usually closed, and the probability of being co-selected is greater, which will lead to a rapid increase in the rate of inbreeding in the population. Reduced genetic variation is not conducive to long-term sustainable breeding, so a trade-off between genetic gain and inbreeding is required. Genomic mating is the use of candidate individuals' genomic information to implement optimized breeding and mating, which can effectively control the rate of inbreeding in the population and achieve long-term and sustainable genetic gain. It is more suitable for modern animal breeding, especially for conservation and genetic improvement of local domestic animal breeds. Selection is a continuous process that can influence the distribution of target traits in a population. From the perspective of breeding, elite individuals are selected for breeding, which is called truncated selection. With the introduction and application of the best linear unbiased prediction (BLUP) method, breeders began to use pedigree-based estimated breeding values (EBV) to select candidates for the genetic improvement of complex traits. Although truncated selection based on EBV can significantly improve the genetic progress, the genetic relationships between individuals with a high breeding value are usually closed, and the probability of being co-selected is greater, which will lead to a rapid increase in the level of inbreeding in the population. Reduced genetic variation is not conducive to long-term sustainable breeding, so a trade-off between genetic progress and inbreeding is required. As livestock and poultry breeding enters the genomic era, using genomic information to obtain optimal mating plans has formally been proposed by Akdemir et al., a method called genomic mating (GM). GM is more accurate and reliable than using pedigree information. Moreover, it can effectively control the inbreeding level of the population and achieve long-term and sustainable genetic gain. Hence, GM is more suitable for modern animal breeding, especially for local livestock and poultry breed conservation and genetic improvement. This review mainly summarized the principle of genomic mating, the methodology and usage of genomic mating, and the progress of its application in livestock and poultry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available