4.7 Article

Effects of Crotonylation on Reprogramming of Cashmere Goat Somatic Cells with Different Differentiation Degrees

Journal

ANIMALS
Volume 12, Issue 20, Pages -

Publisher

MDPI
DOI: 10.3390/ani12202848

Keywords

somatic cells; lysine crotonylation; cloned embryo; epigenetic modification

Funding

  1. Science and Technology Major Project of Inner Mongolia Autonomous Region of China
  2. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock [2020ZD0008, 2121ZD0019]

Ask authors/readers for more resources

This study found that increasing the level of crotonylation can promote the reprogramming of somatic cells and the development of cloned embryos in Cashmere goats. This finding provides an important reference for improving the efficiency of in vitro Cashmere goat somatic cell nuclear transfer embryo production.
Simple Summary Currently, not enough is known about the effect of histone modification on the epigenetic reprogramming of somatic cells, and the lack of basic study limits the development of somatic cell nuclear transfer technology. The aim of this study was to explore the influence of lysine crotonylation, a newly discovered histone post-translational modification, on the reprogramming of somatic cells from Cashmere goats. The results showed that the crotonylation level was increased in somatic cells with sodium crotonate treatment. At the same time, the treatment of somatic cells improved the cloned embryo cleavage rate. In conclusion, an increasing crotonylation level could promote the reprogramming of somatic cells and cloned embryo development. This finding provides an important reference for future improvements in the efficiency of in vitro Cashmere goat somatic cell nuclear transfer embryo production. Failure in the epigenetic reprogramming of somatic cells is considered the main reason for lower cloned embryo development efficiency. Lysine crotonylation (Kcr) occupies an important position in epigenetic modification, while its effects on somatic cell reprogramming have not been reported. In this study, we detected the influence of sodium crotonate (NaCr) on the Kcr levels in three types of somatic cells (muscle-derived satellite cells, MDSCs; fetal fibroblast cells, FFCs; and ear tip fibroblast cells, EFCs). The three types of somatic cells were treated with NaCr for cloned embryo construction, and the cleavage rates and Kcr, H3K9cr, and H3K18cr levels in the cloned embryos were analyzed. The results showed that the abnormal levels of Kcr, H3K9cr, and H3K18cr were corrected in the treatment groups. Although there was no significant difference in the cloned embryo cleavage rate in the FFC treatment group, the cleavage rates of the cloned embryos in the MDSCs and EFCs treatment groups were increased. These findings demonstrated that the Kcr level was increased with NaCr treatment in somatic cells from Cashmere goat, which contributed to proper reprogramming. The reprogramming of somatic cells can be promoted and cloned embryo development can be improved through the treatment of somatic cells with NaCr.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available