4.6 Article

Modelling Deaggregation Due to Normal Carrier-Wall Collision in Dry Powder Inhalers

Journal

PROCESSES
Volume 10, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/pr10081661

Keywords

dry powder inhalers; DEM simulations; carrier-based formulations; deaggregation

Ask authors/readers for more resources

Powder deaggregation is crucial for drug effectiveness in Dry Powder Inhalers (DPI) with carrier-based formulations. This study uses DEM simulation to investigate the detachment of fine and cohesive API particles. The results are analyzed using an analytical model and compared to commercial devices.
Powder deaggregation in Dry Powder Inhalers (DPI) with carrier-based formulations is a key process for the effectiveness of drug administration. Carrier-wall collisions are one of the recognised mechanisms responsible for active pharmaceutical ingredient (API) aerosolisation, and DPI geometries are designed to maximise their efficacy. The detachment of fine and cohesive API particles is investigated at a fundamental level by simulating with DEM the normal collision of a carrier sphere with an API particle attached. The impact velocity at which detachment occurs (escape velocity) is determined as a function of key parameters, such as cohesiveness, coefficient of restitution, static and rolling friction. An analytical model for the escape velocity is then derived, examining the role of the initial position of the particle, cohesion model and particle size. Finally, the results are framed in the context of DPI inhalers, comparing the results obtained with impact velocities typically recorded in commercial devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available