4.7 Article

Degradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial Infections

Journal

PHARMACEUTICS
Volume 14, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14081739

Keywords

chondroitin sulfate; CS microgels; nanogels; controlled degradation; drug delivery; tobramycin; amikacin; Pseudomonas keratitis

Funding

  1. Ophthalmology Department at USF

Ask authors/readers for more resources

Non-degradable, slightly degradable, and completely degradable micro/nanoparticles derived from chondroitin sulfate (CS) were synthesized. The CS particles with tunable degradation ability showed sustainable release of antibiotics with improved biocompatibility for the treatment of bacterial keratitis.
Non-degradable, slightly degradable, and completely degradable micro/nanoparticles derived from chondroitin sulfate (CS) were synthesized through crosslinking reactions at 50%, 40%, and 20% mole ratios, respectively. The CS particles with a 20% crosslinking ratio show total degradation within 48 h, whereas 50% CS particles were highly stable for up to 240 h with only 7.0 +/- 2.8% weight loss in physiological conditions (pH 7.4, 37 degrees C). Tobramycin and amikacin antibiotics were encapsulated into non-degradable CS particles with high loading at 250 g/mg for the treatment of corneal bacterial ulcers. The highest release capacity of 92 +/- 2% was obtained for CS-Amikacin particles with sustainable and long-term release profiles. The antibacterial effects of CS particles loaded with 2.5 mg of antibiotic continued to render a prolonged release time of 240 h with 24 +/- 2 mm inhibition zones against Pseudomonas aeruginosa. Furthermore, as a carrier, CS particles significantly improved the compatibility of the antibiotics even at high particle concentrations of 1000 g/mL with a minimum of 71 +/- 7% fibroblast cell viability. In summary, the sustainable delivery of antibiotics and long-term treatment of bacterial keratitis were shown to be afforded by the design of tunable degradation ability of CS particles with improved biocompatibility for the encapsulated drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available