4.7 Article

Theranostic Properties of Crystalline Aluminum Phthalocyanine Nanoparticles as a Photosensitizer

Journal

PHARMACEUTICS
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14102122

Keywords

nanoparticles; phototheranostic; photosensitizer; aluminum phthalocyanine; fluorescence lifetime; phototoxicity

Funding

  1. Ministry of Education and Science of the Russian Federation [075-15-2022315]
  2. RFBR [21-52-12030 NNIO_a]

Ask authors/readers for more resources

The study focuses on the biomedical applications of phthalocyanine nanoparticles (AlPc NPs) as nanophotosensitizers. The research discovers that AlPc NPs can enter cells, localize in lysosomes, exhibit fluorescence, and achieve photodynamic therapy.
The study of phthalocyanines, known photosensitizers, for biomedical applications has been of high research interest for several decades. Of specific interest, nanophotosensitizers are crystalline aluminum phthalocyanine nanoparticles (AlPc NPs). In crystalline form, they are water-insoluble and atoxic, but upon contact with tumors, immune cells, or pathogenic microflora, they change their spectroscopic properties (acquire the ability to fluoresce and become phototoxic), which makes them upcoming agents for selective phototheranostics. Aqueous colloids of crystalline AlPc NPs with a hydrodynamic size of 104 +/- 54 nm were obtained using ultrasonic dispersal and centrifugation. Intracellular accumulation and localization of AlPc were studied on HeLa and THP-1 cell cultures and macrophages (M0, M1, M2) by fluorescence microscopy. Crystallinity was assessed by XRD spectroscopy. Time-resolved spectroscopy was used to obtain characteristic fluorescence kinetics of AlPc NPs upon interaction with cell cultures. The photodynamic efficiency and fluorescence quantum yield of AlPc NPs in HeLa and THP-1 cells were evaluated. After entering the cells, AlPc NPs localized in lysosomes and fluorescence corresponding to individual AlPc molecules were observed, as well as destruction of lysosomes and a rapid decrease in fluorescence intensity during photodynamic action. The photodynamic efficiency of AlPc NPs in THP-1 cells was almost 1.8-fold that of the molecular form of AlPc (Photosens). A new mechanism for the occurrence of fluorescence and phototoxicity of AlPc NPs in interaction with cells is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available