4.7 Article

Dissolution Kinetics of Meloxicam Formulations Co-Milled with Sodium Lauryl Sulfate

Journal

PHARMACEUTICS
Volume 14, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics14102173

Keywords

meloxicam; sodium lauryl sulfate; co-milling; dissolution rate; enhanced dissolution; dissolution kinetics; surface modification

Funding

  1. specific university research MSMT [21SVV/2021, A1_FCHT_2021_002]

Ask authors/readers for more resources

This study investigates different approaches for enhancing drug dissolution and finds that for hydrophobic drugs, the surface properties of particles are crucial for drug release during dissolution, rather than just particle size. Co-milling with sodium lauryl sulfate is shown to be more effective in improving drug release rate.
Meloxicam (MLX) is a poorly soluble drug exhibiting strong hydrophobicity. This combination of properties makes dissolution enhancement by particle size reduction ineffective; therefore, combined formulation approaches are required. Various approaches were investigated in this study, including milling, solid dispersions, and self-emulsified lipid formulations. Whereas milling studies of MLX and its co-milling with various polymers have been reported in recent literature, this study is focused on investigating the dissolution kinetics of particulate formulations obtained by co-milling MLX with sodium lauryl sulfate (SLS) in a planetary ball mill with 5-25 wt.% SLS content. The effects of milling time and milling ball size were also investigated. No significant reduction in drug crystallinity was observed under the investigated milling conditions according to XRD data. For the dissolution study, we used an open-loop USP4 dissolution apparatus, and recorded dissolution profiles were fitted according to the Weibull model. The Weibull parameters and a novel criterion-surface utilization factor-were used to evaluate and discuss the drug release from the perspective of drug particle surface changes throughout the dissolution process. The most effective co-milling results were achieved using smaller balls (2 mm), with a co-milling time of up to 15 min SLS content of up to 15 wt.% to increase the dissolution rate by approximately 100 times relative to the physical mixture reference. The results suggest that for hydrophobic drugs, particle performance during dissolution is very sensitive to surface properties and not only to particle size. Co-milling with SLS prepares the surface for faster drug release than that achieved with direct mixing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available