4.6 Article

Time-Series Clustering of Single-Cell Trajectories in Collective Cell Migration

Journal

CANCERS
Volume 14, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14194587

Keywords

collective cell migration; electrospinning; dimensionality reduction; clustering; migration pattern

Categories

Ask authors/readers for more resources

This study utilized subcellular tracking technology to analyze cell migration, employing normalization and dimensionality reduction methods in the research. The results demonstrate that this approach can effectively identify cells with similar migration patterns, providing a reliable method for understanding collective cell migration patterns.
Simple Summary In this study, we normalized trajectories containing both mesenchymal and epithelial cells to remove the effect of cell location on clustering, and performed a dimensionality reduction on the time series data before clustering. When the clustering results were superimposed on the trajectories prior to normalization, the results still showed similarities in location, indicating that this method can find cells with similar migration patterns. These data highlight the reliability of this method in identifying consistent migration patterns in collective cell migration. Collective invasion drives multicellular cancer cells to spread to surrounding normal tissues. To fully comprehend metastasis, the methodology of analysis of individual cell migration in tissue should be well developed. Extracting and classifying cells with similar migratory characteristics in a colony would facilitate an understanding of complex cell migration patterns. Here, we used electrospun fibers as the extracellular matrix for the in vitro modeling of collective cell migration, clustering of mesenchymal and epithelial cells based on trajectories, and analysis of collective migration patterns based on trajectory similarity. We normalized the trajectories to eliminate the effect of cell location on clustering and used uniform manifold approximation and projection to perform dimensionality reduction on the time-series data before clustering. When the clustering results were superimposed on the trajectories before normalization, the results still exhibited positional similarity, thereby demonstrating that this method can identify cells with similar migration patterns. The same cluster contained both mesenchymal and epithelial cells, and this result was related to cell location and cell division. These data highlight the reliability of this method in identifying consistent migration patterns during collective cell migration. This provides new insights into the epithelial-mesenchymal interactions that affect migration patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available