4.6 Article

FOLFOXIRI Resistance Induction and Characterization in Human Colorectal Cancer Cells

Journal

CANCERS
Volume 14, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/cancers14194812

Keywords

FOLFOXIRI; drug-resistance; colorectal cancer

Categories

Funding

  1. Foundation for the Cancer Fight and Medico-Biological Research, Geneva, Switzerland

Ask authors/readers for more resources

In this study, we created colorectal cancer models in vitro to study how induced drug resistance can affect cell response and sensitivity to treatment. By exposing the cells to first-line treatments, we obtained resistance to chemotherapy and identified key genes involved. We also found that optimized drug combinations can overcome chemotherapy-induced resistance.
Simple Summary We created colorectal cancer in vitro models to study how an induced drug resistance profile can alter cell response and sensitivity to a treatment. By chronically exposing the cells to current first-line treatments (5-FU+folinic acid+oxaliplatin+SN38), resistance to the chemotherapy was obtained. We further investigated the mechanism underlying the acquired chemoresistance and highlighted the main up- and downregulated genes implicated. We also showed that optimized drug combination composed of tyrosine kinase inhibitors overcome chemotherapy-induced resistance. FOLFOXIRI, i.e., the combination of folinic acid, 5-fluorouracil, oxaliplatin, and irinotecan, is a first-line treatment for colorectal carcinoma (CRC), yet non-personalized and aggressive. In this study, to mimic the clinical situation of patients diagnosed with advanced CRC and exposed to a chronic treatment with FOLFOXIRI, we have generated the CRC cell clones chronically treated with FOLFOXIRI. A significant loss in sensitivity to FOLFOXIRI was obtained in all four cell lines, compared to their treatment-naive calls, as shown in 2D cultures and heterotypic 3D co-cultures. Acquired drug resistance induction was observed through morphometric changes in terms of the organization of the actin filament. Bulk RNA sequencing revealed important upregulation of glucose transporter family 5 (GLUT5) in SW620 resistant cell line, while in the LS174T-resistant cell line, a significant downregulation of protein tyrosine phosphatase receptor S (PTPRS) and oxoglutarate dehydrogenase-like gene (OGDHL). This acquired resistance to FOLFOXIRI was overcome with optimized low-dose synergistic drug combinations (ODCs) acting via the Ras-Raf-MEK-ERK pathway. The ODCs inhibited the cell metabolic activity in SW620 and LS174T 3Dcc, respectively by up to 82%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available