4.7 Article

Evolution of brain functional plasticity associated with increasing symptom severity in degenerative cervical myelopathy

Journal

EBIOMEDICINE
Volume 84, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ebiom.2022.104255

Keywords

Cervical; Myelopathy; Network; Connectivity; Functional

Funding

  1. NIH/NINDS [1R01NS078494-01A1, 2R01NS078494-06]

Ask authors/readers for more resources

This study investigated the changes in brain functional network at different stages of myelopathy severity in DCM patients and developed a link prediction model to predict the progression of DCM. The results revealed differences in network connectivity in DCM patients at different stages and demonstrated the predictive capability of the link prediction model.
Background Advanced imaging modalities have helped elucidate the cerebral alterations associated with neurological impairment caused by degenerative cervical myelopathy (DCM), but it remains unknown how brain functional network changes at different stages of myelopathy severity in DCM patients, and if patterns in network connectivity can be used to predict transition to more myelopathic stages of DCM. Methods This pilot cross-sectional study, which involves the collection of resting-state functional MRI (rs-fMRI) images and the modified Japanese Orthopedic Association (mJOA) score, enrolled 116 participants (99 patients and 17 healthy controls) from 2016 to 2021. The patient cohort included 21patients with asymptomatic spinal cord com-pression, 48 mild DCM patients, and 20 moderate or severe DCM patients. Functional connectivity networks were quantified for all participants, and the transition matrices were quantified to determine the differences in network connectivity through increasingly myelopathic stages of DCM. Additionally, a link prediction model was used to determine whether more severe stages of DCM can be predicted from less symptomatic stages using the transition matrices. Findings Results indicated interruptions in most connections within the sensorimotor network in conjunction with spinal cord compression, while compensatory connectivity was observed within and between primary and secondary sensorimotor regions, subcortical regions, visuospatial regions including the cuneus, as well as the brainstem and cerebellum. A link prediction model achieved an excellent predictive performance in estimating connectivity of more severe myelopathic stages of DCM, with the highest area under the receiver operator curve (AUC) of 0.927 for predicting mild DCM from patients with asymptomatic spinal cord compression. Interpretation A series of predictable changes in functional connectivity occur throughout the stages of DCM pathogenesis. The brainstem and cerebellum appear highly influential in optimizing sensorimotor function during worsening myelopathy. The link predication model can inclusively estimate brain alterations associated with myelopathy severity. Copyright (C) 2022 The Author(s). Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available