4.5 Article

Simulated Hydrological Dynamics and Coupled Iron Redox Cycling Impact Methane Production in an Arctic Soil

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021JG006662

Keywords

Arctic; methane; iron reduction; anaerobic decomposition; modeling; carbon

Funding

  1. Office of Biological and Environmental Research in the US Department of Energy's Office of Science
  2. Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]
  3. COMPASS-FME, a multi-institutional project
  4. U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Environmental System Science Program
  5. DOE [DE-AC05-76RL01830]

Ask authors/readers for more resources

The fate of organic carbon in permafrost soils is crucial for the climate system, and thawing permafrost is subject to dynamic hydrology that affects soil organic matter decomposition and greenhouse gas production. This study investigates the role of iron redox reactions and pH dynamics in predicting methane and carbon dioxide production as well as soil organic matter decomposition rates in iron-rich, frequently waterlogged Arctic soils.
The fate of organic carbon (C) in permafrost soils is important to the climate system due to the large global stocks of permafrost C. Thawing permafrost can be subject to dynamic hydrology, making redox processes an important factor controlling soil organic matter (SOM) decomposition rates and greenhouse gas production. In iron (Fe)-rich permafrost soils, Fe(III) can serve as a terminal electron acceptor, promoting anaerobic respiration of SOM and increasing pH. Current large-scale models of Arctic C cycling do not include Fe cycling or pH interactions. Here, a geochemical reaction model was developed by coupling Fe redox reactions and C cycling to simulate SOM decomposition, Fe(III) reduction, pH dynamics, and greenhouse gas production in permafrost soils subject to dynamic hydrology. We parameterized the model using measured CO2 and CH4 fluxes as well as changes in pH, Fe(II), and dissolved organic C concentrations from oxic and anoxic incubations of permafrost soils from polygonal permafrost sites in northern Alaska, United States. In simulations of repeated oxic-anoxic cycles, Fe(III) reduction during anoxic periods enhanced CO2 production, while the net effect of Fe(III) reduction on cumulative CH4 fluxes depended on substrate C availability. With lower substrate availability, Fe(III) reduction decreased total CH4 production by further limiting available substrate. With higher substrate availability, Fe(III) reduction enhanced CH4 production by increasing pH. Our results suggest that interactions among Fe-redox reactions, pH and methanogenesis are important factors in predicting CH4 and CO2 production as well as SOM decomposition rates in Fe-rich, frequently waterlogged Arctic soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available