4.5 Article

In situ Detecting Lipids as Potential Biomarkers for the Diagnosis and Prognosis of Intrahepatic Cholangiocarcinoma

Journal

CANCER MANAGEMENT AND RESEARCH
Volume 14, Issue -, Pages 2903-2912

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/CMAR.S357000

Keywords

intrahepatic cholangiocarcinoma; in situ lipids profiles; metabolomics; mass spectrometry; classification and diagnostic model

Categories

Funding

  1. National Natural Science Foundation of China
  2. Chinese Academy of Medical Sciences Initiative for Innovative Medicine
  3. [81972698]
  4. [CAMS-2017-I2M-4-002]

Ask authors/readers for more resources

This study quantitatively analyzed lipid molecules in tumors and adjacent tissues of intrahepatic cholangiocarcinoma (ICC) and established a diagnostic model to examine lipid changes with clinical classification. By identifying specific metabolites, the study successfully differentiated cancerous areas from adjacent normal areas. The research also found that certain lipid metabolites showed different trends between different clinical stages.
Purpose: To quantitatively analyze lipid molecules in tumors and adjacent tissues of intrahepatic cholangiocarcinoma (ICC), to establish diagnostic model and to examine lipid changes with clinical classification.Patients and Methods: We measured the quantity of 202 lipid molecules in 100 tumor observation points and 100 adjacent observation points of patients who were diagnosed with ICC. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were handles, along with Student's t-test to identify specific metabolites. Prediction accuracy was validated in the validation set. Another logistic regression model was also established on the training set and validated on the validation set.Results: Distinct separation was obtained from PCA and OPLS-DA model. Ten differentiating metabolites were identified using PCA, OPLA-DA and Lasso regression: [m/z 722.5130], [m/z 863.5655], [m/z 436.2834], [m/z 474.2626], [m/z 661.4813], [m/z 750.5443], [m/z 571.2889], [m/z 836.5420], [m/z 772.5862] and [m/z 478.2939]. Using logical regression, a diagnostic equation: y = 3.4*[m/z 436.2834] -3.773*[m/z 474.2626] + 3.82*[m/z 661.4813] -4.394*[m/z 863.5655] + 10.165 based on four metabolites successfully differentiated cancerous areas from adjacent normal areas. The AUROC of the model reached 0.993 (95% CI: 0.985-0.999) in the validation group. Compared with the adjacent non-tumor area, three characteristic metabolites FA (22:4), PA (P-18:0/0:0) and Glucosylceramide (d18:1/12:0) showed an increasing trend from stage I to stage II, while seven other metabolites LPA(16:0), PE (34:2), PE(36:4), PE(38:3), PE(40:6), PE(40:5) and LPE(16:0) showed a decreasing trend from stage I to stage II.Conclusion: We successfully identified lipid molecules in differentiating tumor tissue and adjacent tissue of ICC, established a discrimination logistic model which could be used as a classifier to classify tumor and non-tumor regions based on analysis in tumor margins and provided information for biomarker changes in ICC, and proposed to related lipid changes with clinical classification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available