4.8 Article

Probiotic-based nanoparticles for targeted microbiota modulation and immune restoration in bacterial pneumonia

Journal

NATIONAL SCIENCE REVIEW
Volume 10, Issue 2, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nsr/nwac221

Keywords

probiotic-based nanoparticles; immunocompetent primary bacterial pneumonia; immunocompromised secondary bacterial pneumonia; restoring host immunity

Ask authors/readers for more resources

Probiotic-based nanoparticles can effectively treat immunocompetent primary and immunocompromised secondary bacterial pneumonia by restoring host immunity. These nanoparticles can kill common pathogens, modulate lung microbiota, and alleviate overactive immune responses. This research provides a new strategy for treating bacterial pneumonia in individuals with normal and compromised immunity.
The probiotic-based nanoparticles could effectively treat immunocompetent primary and immunocompromised secondary bacterial pneumonia by restoring host immunity. While conventional bacterial pneumonia mainly centralizes avoidance of bacterial colonization, it remains unclear how to restore the host immunity for hyperactive immunocompetent primary and immunocompromised secondary bacterial pneumonia. Here, probiotic-based nanoparticles of OASCLR were formed by coating chitosan, hyaluronic acid and ononin on living Lactobacillus rhamnosus. OASCLR nanoparticles could effectively kill various clinic common pathogens and antibacterial efficiency was >99.97%. Importantly, OASCLR could modulate lung microbiota, increasing the overall richness and diversity of microbiota by decreasing pathogens and increasing probiotic and commensal bacteria. Additionally, OASCLR could target inflammatory macrophages by the interaction of OASCLR with the macrophage binding site of CD44 and alleviate overactive immune responses for hyperactive immunocompetent pneumonia. Surprisingly, OASCLR could break the state of the macrophage's poor phagocytic ability by upregulating the expression of the extracellular matrix assembly, immune activation and fibroblast activation in immunocompromised pneumonia. The macrophage's phagocytic ability was increased from 2.61% to 12.3%. Our work provides a potential strategy for hyperactive immunocompetent primary and immunocompromised secondary bacterial pneumonia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available