4.8 Article

Plastic leachates impair picophytoplankton and dramatically reshape the marine microbiome

Journal

MICROBIOME
Volume 10, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s40168-022-01369-x

Keywords

Plastic leachate; Microbial communities; Synechococcus; Picoeukaryotes; SAR11; Biogeochemical cycles

Categories

Funding

  1. Australian Research Council [DE150100009]
  2. Australian Research Council Laureate Fellowship [FL140100021]
  3. Australian Research Council [DE150100009] Funding Source: Australian Research Council

Ask authors/readers for more resources

Plastic pollution has significant impacts on marine microbial communities, affecting both attached and planktonic organisms. Leached substances from plastics can lead to decreased microbial diversity, reduced photosynthetic efficiency, and disruptions in trophodynamics and biogeochemical cycling.
Background: Each year, approximately 9.5 million metric tons of plastic waste enter the ocean with the potential to adversely impact all trophic levels. Until now, our understanding of the impact of plastic pollution on marine microorganisms has been largely restricted to the microbial assemblages that colonize plastic particles. However, plastic debris also leaches considerable amounts of chemical additives into the water, and this has the potential to impact key groups of planktonic marine microbes, not just those organisms attached to plastic surfaces. Results: To investigate this, we explored the population and genetic level responses of a marine microbial community following exposure to leachate from a common plastic (polyvinyl chloride) or zinc, a specific plastic additive. Both the full mix of substances leached from polyvinyl chloride (PVC) and zinc alone had profound impacts on the taxonomic and functional diversity of our natural planktonic community. Microbial primary producers, both prokaryotic and eukaryotic, which comprise the base of the marine food web, were strongly impaired by exposure to plastic leachates, showing significant declines in photosynthetic efficiency, diversity, and abundance. Key heterotrophic taxa, such as SAR11, which are the most abundant planktonic organisms in the ocean, also exhibited significant declines in relative abundance when exposed to higher levels of PVC leachate. In contrast, many copiotrophic bacteria, including members of the Alteromonadales, dramatically increased in relative abundance under both exposure treatments. Moreover, functional gene and genome analyses, derived from metagenomes, revealed that PVC leachate exposure selects for fast-adapting, motile organisms, along with enrichment in genes usually associated with pathogenicity and an increased capacity to metabolize organic compounds leached from PVC. Conclusions: This study shows that substances leached from plastics can restructure marine microbial communities with the potential for significant impacts on trophodynamics and biogeochemical cycling. These findings substantially expand our understanding of the ways by which plastic pollution impact life in our oceans, knowledge which is particularly important given that the burden of plastic pollution in the marine environment is predicted to continue to rise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available