4.7 Article

Jones-matrix imaging based on two-photon interference

Journal

NANOPHOTONICS
Volume 12, Issue 3, Pages 579-588

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/nanoph-2022-0499

Keywords

Jones-matrix imaging; quantum imaging; quantum metasurfaces; two-photon interference

Ask authors/readers for more resources

The study presents a method for Jones matrix imaging based on two-photon interference. By using a reference metasurface and measuring the interference between the reference and an unknown object, the polarization responses of the object can be obtained at pixel level. The parallelization of optical measurements in this approach eliminates the need for switching the incident polarization, and takes advantage of the parallelization prevalent in any quantum algorithms.
Two-photon interference is an important effect that is tightly related to the quantum nature of light. Recently, it has been shown that the photon bunching from the Hong-Ou-Mandel (HOM) effect can be used for quantum imaging in which sample properties (reflection/transmission amplitude, phase delay, or polarization) can be characterized at the pixel-by-pixel level. In this work, we perform Jones matrix imaging for an unknown object based on two-photon interference. By using a reference metasurface with panels of known polarization responses in pairwise coincidence measurements, the object's polarization responses at each pixel can be retrieved from the dependence of the coincidence visibility as a function of the reference polarization. The post-selection of coincidence images with specific reference polarization in our approach eliminates the need in switching the incident polarization and thus parallelized optical measurements for Jones matrix characterization. The parallelization in preparing input states, prevalent in any quantum algorithms, is an advantage of adopting two-photon interference in Jones matrix imaging. We believe our work points to the usage of metasurfaces in biological and medical imaging in the quantum optical regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available