4.7 Article

Screen-Printed Graphite Electrode Modified with Graphene-Co3O4 Nanocomposite: Voltammetric Assay of Morphine in the Presence of Diclofenac in Pharmaceutical and Biological Samples

Journal

NANOMATERIALS
Volume 12, Issue 19, Pages -

Publisher

MDPI
DOI: 10.3390/nano12193454

Keywords

electrochemical sensor; morphine; diclofenac; graphene-Co3O4 nanocomposite; screen-printed graphite electrode

Funding

  1. Iran National Science Foundation (INSF)

Ask authors/readers for more resources

This study focuses on the development of a novel electrochemical sensor for the determination of morphine. The sensor demonstrated good sensitivity and analytical efficiency, and could accurately detect morphine in the presence of other substances.
This work focuses on the development of a novel electrochemical sensor for the determination of morphine in the presence of diclofenac. The facile synthesis of graphene-Co3O4 nanocomposite was performed. The prepared material (graphene-Co3O4 nanocomposite) was analyzed by diverse microscopic and spectroscopic approaches for its crystallinity, composition, and morphology. Concerning the electrochemical determinations, after drop-casting the as-fabricated graphene-Co3O4 nanocomposite on the surface of a screen-printed graphite electrode (SPGE), their electrochemical performance was scrutinized towards the morphine detection. It was also found that an SPGE modified by a graphene-Co3O4 nanocomposite exhibited better electrocatalytic activity for morphine oxidation than unmodified electrode. Under optimal conditions, the differential pulse voltammetry (DPV) was employed to explore the present sensor (graphene-Co3O4/SPGE), the findings of which revealed a linear dynamic range as broad as 0.02-575.0 mu M and a limit of detection (LOD) as narrow as 0.007 mu M. The sensitivity was estimated to be 0.4 mu M/(mu A cm(2)). Furthermore, the graphene-Co3O4/SPGE sensor demonstrated good analytical efficiency for sensing morphine in the presence of diclofenac in well-spaced anodic peaks. According to the DPV results, this sensor displayed two distinct peaks for the oxidation of morphine and diclofenac with 350 mV potential difference. In addition, the graphene-Co3O4/SPGE was explored for voltammetric determination of diclofenac and morphine in pharmaceutical and biological specimens of morphine ampoule, diclofenac tablet, and urine, where recovery rates close to 100% were recorded for all of the samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available