4.8 Article

Loss of full-length dystrophin expression results in major cell-autonomous abnormalities in proliferating myoblasts

Journal

ELIFE
Volume 11, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.75521

Keywords

DMD; dystrophin; myoblast; transcriptomics; mdx; Mouse; Human

Categories

Funding

  1. Research England [TNDC2-100022]
  2. Alan Turing Institute

Ask authors/readers for more resources

In Duchenne muscular dystrophy (DMD), myoblasts are affected, leading to muscle degeneration and repair defects. These cells show abnormalities in gene expression and function, impacting muscle regeneration. Therefore, myoblasts can be a novel therapeutic target for the treatment of DMD.
Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmd(mdx) myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmd(mdx-beta geo) myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available