4.2 Article

A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas

Journal

BIOMED RESEARCH INTERNATIONAL
Volume 2022, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2022/8955227

Keywords

-

Funding

  1. Beijing Key Clinical Discipline Funding
  2. [2021-135]

Ask authors/readers for more resources

The purpose of this study was to develop and validate a machine learning model using enhanced MRI to determine the pathological grading of meningiomas. The results showed that multi-habitat analysis based on enhanced MRI accurately predicted the pathological grading of meningiomas. This unsupervised image-based method reflected the direct heterogeneity between high-grade meningiomas and low-grade meningiomas.
Purpose. We aim to develop and validate a machine learning model by enhanced MRI to determine the pathological grading of meningiomas with unsupervised clustering image analysis method, which are multihabitat to reflect the inherent heterogeneity of tumors. Materials and Methods. A total of 120 patients with meningiomas confirmed by postoperative pathology were included in the study, including 60 patients with low-grade meningiomas (WHO grade I) and 60 patients with high-grade meningiomas (WHO grade II and WHO grade III). All patients underwent complete head enhanced magnetic resonance scans before surgery or any anti-tumor treatment. Enrolled patients in the group received surgical resection and obtained postoperative pathological data. The patients in the training group (84 people) and the test group (36 people) were randomly divided into two groups according to the ratio of 7 to 3. Multi-habitat features were extracted from MRI images based on enhanced T1. Machine learning method was used to model, which was used to distinguish high-grade meningioma from low-grade meningioma. At the same time, the obtained machine learning model was calibrated and evaluated. Results. In patients with low-grade meningioma and high-grade meningioma, we found significant differences in Silhouette coefficient (P<0.05). In the machine learning model, the area under the curve was 0.838 in the training group (sensitivity, 67.65%; specificity, 88.82%) and 0.73 in the test group (sensitivity, 69.05%; specificity, 71.43%). After the analysis of calibration curve and decision curve analysis, the model had shown the potential of great application value. Conclusions. Multi-habitat analysis based on enhanced MRI (T1) could accurately predict the pathological grading of meningiomas. This unsupervised image-based method could reflect the direct heterogeneity between high-grade meningiomas and low-grade meningiomas, which is of great significance for patients' treatment and prevention of recurrence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available